• Title/Summary/Keyword: membrane chemistry

Search Result 1,172, Processing Time 0.03 seconds

Tetrahydrofuran-Containing Crown Ethers as Ionophores for NH+4-Selective Electrodes

  • Jin, Hua-Yan;Kim, Tae-Ho;Kim, Jin-Eun;Lee, Shim-Sung;Kim, Jae-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.59-62
    • /
    • 2004
  • The ammonium ion-selective electrodes ($NH^+_4$-ISEs) based on the tetrahydrofuran(THF)-containing-16-crown-4 derivatives,1,4,6,9,11,14,16,19-tetraoxocycloeicosane ($L^1$) and 5,10,15,20,-tetramethyl-1,4,6,9,11,14,16,19-tetraoxocycloeicosane ($L^2$), were prepared and the electrode characteristics were tested. The conditioned $NH_4^+$-ISEs (E1) based on $L^1$ with TEHP as a plasticising solvent mediator gave best results with near-Nernstian slope of 53.9 mV/decade of activity, detection limit of $10^{-4.9}$ M, and enhanced selectivity coefficients for the $NH^+_4$ ion with respect to an interfering $K^+$ ion (log $K^{pot}_{NH_4^+,K^+}$ = -1.84). This result was compared to other ammonium ionophores reported previously, for example, that of nonactin (log $K^{pot}_{NH_4^+,K^+}$ = -0.92). The proposed electrode showed no significant potential changes in the range of 3.0 < pH < 9.0.

Determination of Respiratory Activity of Mitochondria and Submitochondrial Particles by Using Dropping Mercury Electrode (적하수은전극을 이용한 미토콘드리아 및 Submitochondrial particles의 호흡활성측정)

  • Jung, Jin;Park, Sang-Gyu;Lee, Sang-Kee;Kim, Se-Ho
    • Applied Biological Chemistry
    • /
    • v.28 no.4
    • /
    • pp.271-277
    • /
    • 1985
  • A polarograph with specially designed cell compartment usable in kinetic study of the mitochondrial respiration of a small sized sample was made, and its performance and experimental conditions were examined. An applied potential (ca-1.2V vs. SCE) which gives rise to the second step reduction of oxygen caused a considerable level of a residual current independent of oxygen, which is temporarily interpreted as the reduction current of the membrane-bound redox material(s) of mitochondria. A potential corresponding to the first slop reduction of oxygen (ca-0.4V vs SCE) did not produce the residual current. Thus, it is suggested that a measurement of oxygen concentration in a sample of mitochondria and submitochondrial particles by using dropping mercury electrode should be done with an applied potential of about -0.4V vs SCE. Consumption of oxygen by mitochondria was observed to follow practically zero order kinetics. Its rate constant exhibited the proportional relationship with the respiratory activity of mitochondria. Usefulness of tile instrument was properly demonstrated in the work on the temperature effect on the respiration of mitochondria isolated from several plant 4issues which were selected on the basis of chilling susceptivity.

  • PDF

Psychrotolerance Mechanisms in Cold-Adapted Bacteria and their Perspectives as Plant Growth-Promoting Bacteria in Temperate Agriculture

  • Subramanian, Parthiban;Joe, Manoharan Melvin;Yim, Woo-Jong;Hong, Bo-Hui;Tipayno, Sherlyn C.;Saravanan, Venkatakrishnan Sivaraj;Yoo, Jae-Hong;Chung, Jong-Bae;Sultana, Tahera;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.625-636
    • /
    • 2011
  • Cold-adapted bacteria survive in extremely cold temperature conditions and exhibit various mechanisms of adaptation to sustain their regular metabolic functions. These adaptations include several physiological and metabolic changes that assist growth in a myriad of ways. Successfully sensing of the drop in temperature in these bacteria is followed by responses which include changes in the outer cell membrane to changes in the central nucleoid of the cell. Their survival is facilitated through many ways such as synthesis of cryoprotectants, cold acclimation proteins, cold shock proteins, RNA degradosomes, Antifreeze proteins and ice nucleators. Agricultural productivity in cereals and legumes under low temperature is influenced by several cold adopted bacteria including Pseudomonas, Acinetobacter, Burkholderia, Exiguobacterium, Pantoea, Rahnella, Rhodococcus and Serratia. They use plant growth promotion mechanisms including production of IAA, HCN, and ACC deaminase, phosphate solublization and biocontrol against plant pathogens such as Alternaria, Fusarium, Sclerotium, Rhizoctonia and Pythium.

Desalting of papermaking tobacco sheet extract using selective electrodialysis

  • Li, Chuanrun;Ge, Shaolin;Li, Wei;Zhang, Zhao;She, Shike;Huang, Lan;Wang, Yaoming
    • Membrane and Water Treatment
    • /
    • v.8 no.4
    • /
    • pp.381-393
    • /
    • 2017
  • The inorganic components in tobacco sheet extract have significant influence on the sensory taste of the cigars and the harmful component delivery in cigarette smoke. To identify the contributions of the divalent inorganic components on harmful components delivery in cigarette smoke, a self-made selective electrodialysis was assembled with monovalent ion-selective ion exchange membranes. The influences of current density and extract content on the desalination performance were investigated. Result indicates that the majorities chloride, nitrate, and sulfate ions were removed, comparing with 50-60% of potassium and only less than 10% of magnesium and calcium ions removed in the investigated current density. The permselectivity of the tested cations across the Selemion CSO cation exchange membranes follows the order: $K^+>Ca^{2+}>Mg^{2+}$. A current density of $15mA/cm^2$ is an optional choice by considering both the energy consumption and separation efficiency. When the extract contents are in the range of 7%-20%, the removal ratios the potassium ions are kept around 60%, while the removal ratios of the calcium and magnesium ions fluctuate in the range of 16-27% and 8-14%, respectively. The tobacco smoke experiments indicated that the divalent metal ions have dual roles for the harmful component delivery in cigarette smoke. The divalent potassium and calcium ions were unfavorable for the total particulate matter emission but beneficial to decrease the HCN delivery in the mainstream cigarette smoke. The selective electrodialysis is a robust technology to decrease the harmful component delivery in cigarette smoke.

Sources, Components, Structure, Catalytic Mechanism and Applications: a Critical Review on Nicotinate Dehydrogenase

  • Zhi Chen;Xiangjing Xu;Xin Ju;Lishi Yan;Liangzhi Li;Lin Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.707-714
    • /
    • 2023
  • Plant-derived insecticide-neonicotinoid insecticides (NIs) played a crucial role in the development of agriculture and food industry in recent years. Nevertheless, synthesis of these nitrogen-containing heterocyclic compounds with an effective and greener routing remains challenging especially to the notion raise of "green chemistry" and "atom economy". While bio-catalyzed methods mediated by nicotinate dehydrogenase (NDHase) then provide an alternative. The current review mainly focuses on the introduction of sources, components, structure, catalytic mechanism and applications of NDHase. Specifically, NDHase is known as nicotinic acid hydroxylase and the sources principally derived from phylum Proteobacteria. In addition, NDHase requires the participation of the electron respiratory chain system on the cell membrane. And the most important components of the electron respiratory chain are hydrogen carrier, which is mainly composed of iron-sulfur proteins (Fe-S), flavin dehydrogenase (FAD), molybdenum binding protein and cytochromes. Heterologous expression studies were hampered by the plasmid and host with high efficiency and currently only Pseudomonas entomophila L48 as well as Comamonas testosterone was successfully utilized for the expression of NDHase. Furthermore, it is speculated that the conjugate and inductive effects of the substituent group at position 3 of the substrate pyridine ring exerts a critical role in the hydroxylation reactions at position 6 concerning about the substrate molecular recognition mechanism. Finally, applications of NDHase are addressed in terms of pesticide industry and wastewater treatment. On conclusion, this critical review would not only deepen our understanding of the theory about NDHase, but also provides the guideline for future investigation of NDHase.

Crystal Structure of the PTEN Tumor Suppressor: Implications for Its Phosphoinositide Phosphatase Activity and Membrane Association

  • Lee, Jie-Oh;Haijuan Yang;Nikola Pavletich
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.20-20
    • /
    • 2001
  • The PTEN tumor suppressor is mutated in diverse human cancers and in hereditary cancer predisposition syndromes. PTEN is a phosphatase that can act on both polypeptide and phosphoinositide substrates in vitro. The PTEN structure reveals a phosphatase domain similar to protein phosphatases but having an enlarged active site important for the accommodation of the phosphoinositide substrate.(omitted)

  • PDF

A study on removal of 1,4-dioxane in drinking water by multi filtration system (다단계 필터시스템에서의 음용수 중 1,4-Dioxane 제거)

  • Lee, Kang Jin;Pyo, Heesoo;Yoo, Je Kang;Lee, Dae Woon
    • Analytical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.154-162
    • /
    • 2005
  • Recently, 1,4-Dioxane is known as the contaminant in water plants in Korea. Owing to its toxicity and potential health effect, 1,4-Dioxane must be determined at very low levels in drinking water. Studies on the removal of 1,4-Dioxane in drinking water were performed by using multi filtration system with activated carbons and membrane filter. For extraction of 1,4-Dioxane, methyl-t-butyl ether (MTBE) was used and then analyzed using gas chromatography-mass selective detection (GC/MSD). Removal experiment was proceeded for 300 L with a sample volume of 30 L. At first. The removal was 70%, 95% and 100% after using activated carbon, membrane and second activated carbon respectively. At larger accumulated water fluxes, the removal rate decreased at each filter. After the flow volume was 300 L, the removal rate was 30%, 88% and 99% through the first activated carbon, membrane and second activated carbon respectively.

Determination of Verapamil with ISE based on Ion Exchanger (이온교환체 전극을 이용한 베라파밀 정량)

  • Lee, Eun-Yup;Kim, Dong-O;Chang, Seung-Hyun;Hur, Moon-Hye;Ahn, Moon-Kyu
    • YAKHAK HOEJI
    • /
    • v.40 no.2
    • /
    • pp.135-140
    • /
    • 1996
  • Ion-selective poly(vinyl chloride)(PVC) membrane electrodes for the determination of the calcium antagonist verapamil and its pharmaceutical preparations were described. Verapam il-superchrome garnet Y(SGY), lumogallion(LG), acid red 97(AR97), Dragendorff(DD) and Meyer reagent ion pairs were inverstigated as an electroactive compound for membrane electrode. Stable potentiometric response was obtained with azo dye at pH 6.5-4.0 and with DD, and Meyer reagent at pH 6.5-3.0. The best plasticizer was 49w/w% 2-nitrophenyl octyl ether for azo dye, and 65.3w/w% tri(n-butyl) citrate for DD and Meyer reagent. Potentiometric response slopes of optimized membrane electrodes based on SGY, LG, AR97, DD, and Meyer complex for verapamil were 52.49, 54.88, 50.81, 54.13 and 49.31 mV/dec., respectively. Lower limits of linear range were $1.0{\times}10^6M$ for SGY, LG, and AR97, while those for DD and Meyer reagent were $4{\times}10^{-6}M$. Detection limits for all these electrodes were $1{\times}10^{-5}M,\;4{\times}10^{-6}M,\;1.8{\times}10^{-6}M,\;8{\times}10^{-7}M,\;and\;1{\times}10^{-6}M$ with relative standard deviation of 2.56, 3.6, 3.96, 2.56, 3.20%, respectively.

  • PDF