• 제목/요약/키워드: melting current

검색결과 251건 처리시간 0.028초

대기압 글로우 방전의 구현 및 안정화에 대한 실험적 연구 (An Experimental Study on the Implementation and Stabilization of Atmospheric Pressure Glow Discharge)

  • 최상원
    • 한국안전학회지
    • /
    • 제23권4호
    • /
    • pp.42-46
    • /
    • 2008
  • Ionizers are essential in various areas of manufacturing industries to protect electrostatic hazards and to reduce inferior products. For ion sources used in the charge neutralizers, there are corona discharge, soft X-ray, ultraviolet and glow discharge. Glow discharge has lots of attractive properties, such as lower discharge sustaining voltage, no generation of ozone, and so on. In this paper, we did an experimental study to trace the mechanism and stabilization of atmospheric pressure glow discharge using the several size and shape of electrodes. As an experimental result, to sustain conditions of atmospheric pressure glow discharge is that discharge voltage is 360V, discharge current is 12mA, apply frequency is 1kHz between electrodes when positive electrode is molybdenum(Mo) and negative electrode is copper(Cu). We confirmed that the mechanism and stabilization of atmospheric glow discharge is deeply concerned with the shape and material of electrode for discharge. Especially, glow discharge in atmospheric pressure was well generated and sustained according with the physical properties used electrode materials, example melting point, thermal conductivity, and etc.

국부용융성장법으로 제조한 (Sm/Y)-Ba-Cu-0계 고온복합초전도체의 CeO2첨가에 따른 초전도특성 (Superconducting Properties of (Sm/Y)-Ba-Cu-0 High Tc Composite Superconductors with CeO2 Additive by Zone-Melt Textured Growth)

  • 김소정
    • 한국전기전자재료학회논문지
    • /
    • 제15권3호
    • /
    • pp.269-274
    • /
    • 2002
  • (Sm/Y)-Ba-Cu-O system high Tc composite superconductors with/without $CeO_2$ additive were directionally grown by zone-melting process, haying large temperature gradient, In air atmosphere. Cylindrical green rods of $({Sm/y})_{1.8}Ba_{2.4}Cu_{3.4}O_x$ [(Sm/Y)1.8] composite oxides by cold isostatic pressing(CIP) method using rubber mold were fabricated. The microstructure and superconducting properties were investigated by XRD, SEM, TEM and SQUID magnetometer. The size of nonsuperconducting $({Sm/y})_2BaCuO_5$ inclusions of the melt-textured (Sm/Y)1.8 sample with CeO$_2$ additive were remarkably reduced and uniformly distributed within the superconducting (Sm/Y)1.8 matrix. Both samples, with/without $CeO_2$ additive, showed an onset Tc $\geq$ 90 K and sharp superconducting transition. The critical current density Jc value of the $CeO_2$ addictive were $1{\times}10^5A/\textrm{cm}^2$ in 77 K, 0 Tesla.

Microstructural Change and Magnetic Properties of Nanocrystalline Fe-Si-B-Nb-Cu Based Alloys Containing Minor Elements

  • Nam, Seul-Ki;Moon, Sun-Gyu;Sohn, Keun Yong;Park, Won-Wook
    • Journal of Magnetics
    • /
    • 제19권4호
    • /
    • pp.327-332
    • /
    • 2014
  • The effect of minor element additions (Ca, Al) on microstructural change and magnetic properties of Fe-Nb-Cu-Si-B alloy has been investigated, in this paper. The Fe-Si-B-Nb-Cu(-Ca-Al) alloys were prepared by arc melting in argon gas atmosphere. The alloy ribbons were fabricated by melt-spinning, and heat-treated under a nitrogen atmosphere at $520-570^{\circ}C$ for 1 h. The soft magnetic properties of the ribbon core were analyzed using the AC B-H meter. A differential scanning calorimetry (DSC) was used to examine the crystallization behavior of the amorphous alloy ribbon. The microstructure was observed by X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM). The addition of Ca increased the electrical resistivity to reduce the eddy current loss. And the addition of Al decreased the intrinsic magnetocrystalline anisotropy $K_1$ resulting in the increased permeability. The reduction in the size of the ${\alpha}$-Fe precipitates was observed in the alloys containing of Ca and Al. Based on the results, it can be concluded that the additions of Ca and Al notably improved the soft magnetic properties such as permeability, coercivity and core loss in the Fe-Nb-Cu-Si-B base nanocrystalline alloys.

전자선 조사에 따른 절연재료(LDPE)의 전기전도특성 (Electrical Conduction Properties due to Electron Beam Irradiation of Low Density Polyethylene)

  • 이종필;김이두;오세영;김석환;김왕곤;이충호;홍진웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1416-1418
    • /
    • 1998
  • In this paper, the physical and electrical conduction properties due to the electron beam irradiation for low density polyethylene using insulating materials of the distribution cable and ultra-high voltage cable are studied. In FTIR spectrum for physical properties, the strong absorptions by methyl groups in wavenumbers 720[$cm^{-l}$] and 1463[$cm^{-l}$] are observed, and the effect by residual carbonyl groups (C = 0) is hardly appeared. So, as a result of the electrical conduction properties, it is confirmed that the conduction current is increased nearly to 50[$^{\circ}C$], and is not changed until the crystalline melting point from the temperature over 60[$^{\circ}C$] because of the defects of morphology and the formation of many trap centers by means of electron beam irradiation.

  • PDF

티타늄재 맞대기 용접부의 개선형상에 따른 잔류응력 평가 (The Residual Stresses Evaluation of Butt Welded Zone on the Joint Shape in the Titanium Plate)

  • 성백섭;김일수;김인주;차용훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.290-294
    • /
    • 1997
  • In this study, the welded residual stresses test was carried out with pure titanium and TIG welded material using in chemical plants an airplane frames etc.. The relationship between process parameters and residual stresses is complex since a number of factors are involved. Extensive studies have been carried out to determine the effects of various process parameters on residual stress. The result of micro-hardness about butt welded spacemen was measured of low hardness value in the melting metal zone. The residual stress of welded zone on the Titanium plate by the sectioning method and finite element method was high measured in the spacemen of high current and voltage. Also, compressive residual stress in the range of distance about 15∼20mm from the middle of the deposited metal area is very change. The result of impact test about butt welded spacemen of pure titanium plate was measured of very difference in the welded bead, heat affect zone and base metal, and be measured of high impact value in the heat affect zone. The measure result of welded residual stresses about pure titanium is high measured hen nominal steel plate. The V-Type butt welded spacemen, that of the measurement result on the welded residual stress is high measure then X-Type butt welded spacemen.

  • PDF

Residual stresses measurement in the butt joint welded metals using FSW and TIG methods

  • Taheri-Behrooz, Fathollah;Aliha, Mohammad R.M.;Maroofi, Mahmood;Hadizadeh, Vahid
    • Steel and Composite Structures
    • /
    • 제28권6호
    • /
    • pp.759-766
    • /
    • 2018
  • Friction Stir Welding (FSW) is a solid-state process, where the objects are joined together without reaching their melting point. It has been shown that this method is a suitable way to join dissimilar aluminium alloys. The current article employed hole drilling technique to measure the residual stress distribution experimentally in different zones of dissimilar aluminium alloys AA6061-T6 and AA7075-T6 Butt welded using FSW. Results are compared with those of similar AA6061-T6 plates joined using a conventional fusion welding method called tungsten inert gas (TIG). Also, the evolution of the residual stresses in the thickness direction was investigated, and it was found that the maximum residual stresses are below the yield strength of the material in the shoulder region. It was also revealed that the longitudinal residual stresses in the joint were much larger than the transverse residual stresses. Meanwhile, Vickers micro hardness measurements were performed in the cross-section of the samples. The largest hardness values were observed in the stir zone (SZ) adjacent to the advancing side whereas low hardness values were measured at the HAZ of both alloys and the SZ adjacent to the retreating side.

Laser-induced Damage to Polysilicon Microbridge Component

  • Zhou, Bing;He, Xuan;Li, Bingxuan;Liu, Hexiong;Peng, Kaifei
    • Current Optics and Photonics
    • /
    • 제3권6호
    • /
    • pp.502-509
    • /
    • 2019
  • Based on the typical pixel structure and parameters of a polysilicon uncooled bolometer, the absorption rate of a polysilicon microbridge infrared detector for 10.6 ㎛ laser energy was calculated through the optical admittance method, and the thermal coupling model of a polysilicon microbridge component irradiated by far infrared laser was established based on theoretical formulas. Then a numerical simulation study was carried out by means of finite element analysis for the actual working environment. It was found that the maximum temperature and maximum stress of the microbridge component are approximately exponentially changing with the laser power of the irradiation respectively and that they increase monotonically. The highest temperature zone of the model is gradually spread by the two corners of the bridge surface that are not connected to the bridge legs, and the maximum stress acts on both sides of the junction of the microbridge legs and the substrate. The mechanism of laser-induced hard damage to polysilicon detectors is the melting damage caused by high temperature. This paper lays the foundation for the subsequent study of the interference mechanism of the laser on working state polysilicon detectors.

울트라 내로우 갭 용접에서 갭 내 고른 아크입열 분포를 위한 상ㆍ하 토치요동 효과 (Effect of Up-and-Down Torch Oscillation for Providing Uniform Heat Input along the Sidewall of Gap on Ultra Narrow Gap Welding)

  • 김두영;나석주
    • Journal of Welding and Joining
    • /
    • 제21권3호
    • /
    • pp.85-91
    • /
    • 2003
  • Narrow gap welding has many advantages over conventional V-grooved butt welding such as high productivity, small deformation and improved mechanical property of joints. With narrower groove gap, less arc heat input is expected will all the other advantages of narrow gap welding. The main defects of narrow gap welding include the lack of root fusion, convex bead surface and irregular surface, all of which have negative effects on the next welding pass. This paper suggests an up-and-down torch oscillation for ultra narrow gap welding with gap size of 5mm and investigates the proper welding conditions to fulfill the reliable and high welding quality. First, GMA welding model was suggested for ultra narrow gap welding system with Halmoy's model referenced for wire melting modeling. And the arc length in ultra narrow gap was defined. Secondly, based on the experimental results of up-and-down torch oscillation welding, phase shift of current and wire extension length were simulated for varying oscillation frequency to show that weld the bead shape in ultra narrow gap welding can be predicted. As the result, it was confirmed that reliable weld quality in ultra narrow gap welding can be achieved with up-and-down torch oscillation above 15Hz due to its ability to provide uniform heat input along the sidewall of gap.

무정전 결상 보상장치에 관한 연구 (A Study on the Uninterruptible Power Open Phase Compensation Device)

  • 송영주;오진택;김나운;신혜영
    • 조명전기설비학회논문지
    • /
    • 제28권8호
    • /
    • pp.75-81
    • /
    • 2014
  • It has been widely accepted that open phase may separate one of the power lines from power supply which is mainly caused by fuse melting, malfunction for source circuit breaker, contact failure, and disconnection under normal operating conditions, and is considered a kind of failure mode during disconnection of neutral wires as well. When open phase occurs, unequal voltage between phase might happen in the unbalanced load connected each phase, and further, depending on conditions of load, malfunction by providing low voltage. Moreover, load could be burned or overheated with overvoltage, which, in turn, can be a contributor to starting fires. Accordingly, in order to clearly overcome these problems, the current study aims to introduce the theory of uninterruptible power open phase compensation device, meaning that unbalanced power automatically restores balanced power and provides continuously the power supply without blackout, and verify it through simulation and experiments.

Ti 함유된 스테인리스강 용접부의 전기화학적 특성 (Electrochemical Characteristics of Welded Stainless Steels Containing Ti)

  • 최한철
    • 한국표면공학회지
    • /
    • 제38권6호
    • /
    • pp.227-233
    • /
    • 2005
  • Electrochemical characteristics of welded stainless steels containing Ti have been studied by using the electrochemical techniques in 0.5 M $H_2SO_4$+0.01 M KSCN solutions at $25^{\circ}C$. Stainless steels with 12 mm thick-ness containing $0.2{\~}0.9 wt\%$ Ti were fabricated with vacuum melting and following rolling process. The stainless steels were solutionized for 1hr at $1050^{\circ}C$ and welded by MIG method. Samples were individually prepared with welded zone, heat affected zone, and matrix for intergranular corrosion and pitting test. Optical microscope, XRD and SEM are used for analysing microstructure, surface and corrosion morphology of the stainless steels. The welded zone of the stainless steel with lower Ti content have shown dendrite structure mixed with $\gamma$ and $\delta$ phase. The Cr-carbides were precipitated at twin and grain boundary in heat affected zone of the steel and also the matrix had the typical solutionized structure. The result of electrochemical measurements showed that the corrosion potential of welded stainless steel were Increased with higher Ti content. On the other hand, reactivation($I_r$), passivation and active current($I_a$) density were decreased with higher Ti content. In the case of lower Ti content, the corrosion attack of welded stainless steel was remarkably occurred along intergranular boundary and ${\gamma}/{\delta}$ phase boundary in heat affected zone.