• Title/Summary/Keyword: melt-viscosity

Search Result 191, Processing Time 0.026 seconds

Effect of viscosity ratio and AN content on the compatibilization of PC-SAN blends during ultrasound-assisted melt mixing

  • Kim, Hyung-Su;Yang, Hyun-Suk;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.4
    • /
    • pp.165-170
    • /
    • 2005
  • In this study, high intensity ultrasound was employed to induce mechano-chemical degradation during melt mixing of polycarbonate (PC) and a series of styrene-acrylonitrile (SAN) copolymers. It was confirmed that generation of macroradicals of constituent polymers can lead to in-situ copolymer formation by their mutual combination, which should be an efficient path to compatibilize immiscible polymer blends and stabilize their phase morphology in the absence of other chemical agents. Based on the effectiveness of the compatibilization by ultrasound assisted mixing process, we investigated the effects of viscosity ratio of PC and SAN and AN content in SAN on the compatibilization of PC/SAN blends. It was found that effectiveness of compatibilization is optimal when the AN content is in the range of favorable interaction with PC and the viscosity of the matrix is higher than that of the dispersed phase. In addition, changes in the interfacial tension between PC and SAN were assessed by examining relaxation spectra which were obtained from measuring rheological properties of ultrasonically treated blends.

Influence of sugar alcohol and enzyme treatment on the quality characteristics of soy ice cream (당알콜과 효소의 종류가 대두아이스크림의 품질특성에 미치는 영향)

  • 구선희;이숙영
    • Korean journal of food and cookery science
    • /
    • v.16 no.2
    • /
    • pp.151-159
    • /
    • 2000
  • The effects of bromelain and $\alpha$-chymotrypsin treatments on the functional properties(foaming capacity, foaming stability, emulsifying capacity, and emulsifying stability) of soy protein isolate(SPI) and the addition of various sweeteners(sucrose, sorbitol, xylitol) on the quality attributes(viscosity, overrun ratio, melt-down property, and sensory characteristic) of soy ice cream were studied. SPI was more effectively hydrolyzed with $\alpha$-chymotrypsin than bromelain, resulting in a better foaming and emulsifying capacity. Adding xylitol could significantly improve the viscosity, overrun and melt-down property of soy ice creams while the effect was the lowest in the sucrose addition. Bromelain treatment caused a lower apparent viscosity of SPI suspension compared with $\alpha$-chymotrypsin treatment and untreated. The overrun ratios of the soy ice cream prepared with bromelain and $\alpha$-chymotrypsin treated SPI were 18.9∼25.9% and 24.9∼40.3%, respectively as a result of freezing with agitation for 20 min in an ice cream maker. Comparatively, untreated SPI could bring only 15.8∼21.4% overrun ratios after operating for 15 min. The bromelain treatment caused high melt-down tendency of the product while soy ice cream with untreated SPI showed an opposite trend. In sensory characteristics, no significant differences in the strength of beany flavor were noted among the samples. Sweetness, bitter taste, icy feel, and mouthfeel of the product were greatly affected by the enzyme-treatment of SPI. Soy ice cream added with xylitol after $\alpha$-chymotrypsin treatment was the most acceptable among all samples.

  • PDF

Preparation and Their Properties of Hot-Melt Adhesive using Styrene Block Copolymer and Petroleum Resin (스타이렌 블록 공중합체(SBC)와 석유수지를 이용하여 제조한 핫멜트 접착제의 제조 및 특성)

  • Jeong, Booyoung;Cheon, Jungmi;Yoo, Chongsun;Chun, Jeahwan
    • Journal of Adhesion and Interface
    • /
    • v.9 no.4
    • /
    • pp.12-16
    • /
    • 2008
  • Hot-melt adhesive was solid phase in room temperature as 100% solid contents. So it has advantage which attach to substrate with the low pressure heat, fast adhesion speed and environment friendly. In this study, We studied about the effect of a kind of SBS resin and petroleum resin as a tackifier resin and their ratio for hot-melt adhesive on properties. The styrene and $C_9$ resin contents in hot-melt adhesive was increased with increasing viscosity, tensile strength, peel strength and thermal resistance.

  • PDF

Viscosity of polymer melts reduced jointly by filler addition and LCP fibrillation

  • He, Jiasong
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.132-132
    • /
    • 2006
  • Filler loading (fiber or particulate) usually increases the melt viscosity of polymers. In contrast, the addition of these fillers and fibrillation of thermotropic liquid crystalline polymer (LCP) jointly decreased the viscosity of polymer melts to lower than those of pure component polymers, filler-loaded or LCP-blended ones; and even decreased the viscosity with increasing filler loading. Termed as rheological hybrid effect, this phenomenon correlated well with the LCP fibrillation in these ternary systems. Research taking fillers of various shapes and sizes showed that the filler addition promoted the LCP fibrillation, depending upon thermodynamic and dynamic factors involved.

  • PDF

Study of shear and elongational flow of solidifying polypropylene melt for low deformation rates

  • Tanner, R.I.;Kitoko, V.;Keentok, M.
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.2
    • /
    • pp.63-73
    • /
    • 2003
  • An experimental technique was developed to determine the strain-rate in a tensile specimen. Then one can calculate the transient isothermal elongational viscosity. Both shear and elongational viscosities were measured to study the effect of shear and elongational fields on the flow properties. The comparison between these viscosities shows that the onset of rapid viscosity growth as crystallization solidification proceeds occurs at about the same value of time at very small deformation rates (0.0028 and 0.0047 $s^{-1}$). The comparison of these measured viscosities as functions of shear and elongational Hencky strains also reveals that the onset of rapid viscosity growths starts at critical Hencky strain values. The behaviour of steady shear viscosity as function of temperature sweep was also explored at three different low shear rates. Finally, the influence of changing oscillatory frequencies and strain rates was also investigated.

Functional Improvement of Hot Melt Adhesive Using Polyamide Type Resin - (II) The Effects of Terpene Resin - (폴리아미드계 수지를 이용한 핫멜트 접착제의 기능향상 - (II) 테르펜수지의 영향 -)

  • Chung, Kyung-Ho;Hong, Young-Keun;Chun, Young-Sik
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.226-231
    • /
    • 1998
  • Hot melt adhesive which is solventless type has been widely used due to the possibility of automated adhesion process. The main purpose of this study is the development of polyamide based hot melt adhesive to improve the property of conventional ethylene-vinyl acetate hot melt adhesive, which has an inherent problem against heat resistance. In this study, it was found that the terpolymers of nylon 6, nylon 66, and nylon 12(CM831, 843P types) instead of nylon homopolymer were suitable base resins for hot melt adhesive, since the disruption of regularity in the polymer chains reduced the crystallinity, resulting in lower melting point and melt viscosity. According to the results, the optimum adhesion property could be obtained by the using 75/25~50/50 weight radio of CM831/843P resin as a base resin. Terpene resin was used as tackifier to improve adhesion and wetting properties. The best result can be obtained with the 10 wt.% addition of terpene resin. The terpene resin acted as proper tackifier in this system which decreased the melt temperature and viscosity, but increased the mechanical strength of adhesive itself. Also, the rheological property of the adhesive changed from typical non-Newtonian behavior to Newtonian behavior as terpene resin was added.

  • PDF

A Study of High Viscosity Melt Front Advancement at the Filling Process of Injection-Compression Mold

  • Park, Gyun-Myoung;Kim, Chung-Kyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.333-334
    • /
    • 2002
  • Injection-compression molding parts are many cases with complicated boundary condition which is difficult to analysis of mold characteristics precisely. In this study, the effects of various process parameters such as multi-point gate location, initial charge volume, injection time and pressure have been investigated using finite element method to fomulate the melt front advancement during the mold filling process. A general governing equation for tracking the filling process during injection-compression molding is applied to volume of fluid method. To verify the results of present analysis, they are compared with those of the other paper. The results show a strong effect of processing conditions as a result of variations in the three-dimensional complex geometry model.

  • PDF

Structure-property relationship of melt intercalated maleated polyethylene nanocomposites

  • Reddy, M.M.;Gupta, Rahul K.;Bhattacharya, S.N.;Parthasarathy, R.
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.3
    • /
    • pp.133-139
    • /
    • 2007
  • Low density polyethylene nanocomposites were prepared by melt intercalating maleic anhydride grafted polyethylene and montmorillonite clay. It has been found that maleic anhydride has promoted strong interactions between polyethylene and montmorillonite, leading to the homogeneous dispersion of clay layers. Rheological experiments revealed that prepared nanocomposites exhibited shear thinning behaviour. Polyethylene nanocomposites exhibited an increase in steady shear viscosities compared to virgin polyethylene owing to strong polymer clay interactions. The tensile strength of nanocomposites was improved but elongation at break decreased considerably. Also, barrier properties improved significantly with montmorillonite content.

Reactive Hot Melt Polyurethane Adhesives Modified by Acrylic Copolymer Nanocomposites

  • Cho, Youn-Bok;Jeong, Han-Mo;Kim, Byung-Kyu
    • Macromolecular Research
    • /
    • v.17 no.11
    • /
    • pp.879-885
    • /
    • 2009
  • A macroazoinitiator (MAI) containing a poly(ethylene glycol) (PEG) segment was intercalated in the gallery of sodium montmorillonite (Na-MMT). Acrylic monomers were polymerized using this MAI intercalated in Na-MMT to prepare the acrylic copolymer nanocomposite (AN), which is a multiblock copolymer composed of two segments, an acrylic copolymer and PEG intercalated in Na-MMT (Na-MMT/PEG). When AN was used to modify the reactive hot melt polyurethane adhesive (RHA), the acrylic copolymer segment and Na-MMT/PEG synergistically enhanced the initial bond strength evolution and reduced the set time, even when the amount of Na-MMT in RHA was < 1 wt%. The viscosity of RHA increased and the tensile properties of the cured RHA film decreased due to modification with AN. These variations were more evident as the Na-MMT content in AN was increased.