• 제목/요약/키워드: melt processing

검색결과 241건 처리시간 0.026초

Effect of SiO2/B2O3 ratio on Li ion conductivity of a Li2O-B2O3-SiO2 glass electrolyte

  • Kim, Young Han;Yoon, Mi Young;Lee, Eun Jung;Hwang, Hae Jin
    • Journal of Ceramic Processing Research
    • /
    • 제13권spc1호
    • /
    • pp.37-41
    • /
    • 2012
  • A lithium ion conducting borosilicate glass was fabricated by a conventional melt quenching technique from a mixture of Li2CO3, B2O3 and SiO2 powders. The Li ion conductivity of the lithium borosilicate glasses was evaluated in terms of the SiO2/B2O3 ratio. In the Li2O-B2O3-SiO2 ternary glass, the glass forming region decreases with an increasing Li2O content. At the same Li2O, the crystallization tendency of the glass samples increases with the SiO2/B2O3 ratio, resulting in a reduced glass forming region in the Li2O-B2O3-SiO2 ternary glass. The electrical conductivity moderately depends on the SiO2/B2O3 ratio in the Li2O-B2O3-SiO2 ternary glass. The conductivity of the glasses slightly increases with the SiO2/B2O3 ratio. The observed phenomenon can be explained by the modification of the glass structure as a function of the SiO2 content.

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • 한국분말재료학회지
    • /
    • 제9권6호
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

우수한 용융특성을 갖는 Cellulose acetate/Poly ethylene glycol 조성물의 제조 및 특성 해석 (Preparation and Characterization of Cellulose Acetate/Poly Ethylene Glycol Blend Having High Melt Processibility)

  • 이해성;이성준;정상원;김현철;김은주;고영준;이세근
    • 한국안광학회지
    • /
    • 제17권1호
    • /
    • pp.1-10
    • /
    • 2012
  • 목적: 본 연구는 cellulose acetate(CA)의 용융특성을 증가시키기 위해 polyethyleneglycol(PEG)를 도입함으로써 기존에 사용되는 환경유해성 가소제의 사용 없이 열가공성이 향상 된 CA/PEG 조성물을 제조하는데 목적이 있다. 방법: CA의 최적 가소화 조건을 확립하기 위해 PEG 분자량, 농도, 및 혼입온도를 제어하여 CA/PEG 조성물의 가소화 성능을 확인하였으며, CA와 PEG간의 혼화성을 확인하기 위해 제조된 조성물의 열분석 및 표면분석을 실시하였다. 또한 기존 상용 CA 레진과의 가소제 용출특성, 기계적 물성 및 광학적 특성들의 비교분석을 통해 가소제에 의한 물성차이를 검토하였다. 결과: PEG의 도입을 통해 기존 상용 CA 레진과 유사한 가소화 성능을 확인하였으며, 최적의 가소화 조건은 PEG분자량 400, PEG 함량 30~40 phr, 가소화온도 $175{\sim}180^{\circ}C$에서 우수한 용융특성을 나타냄을 확인 하였다. 또한 기존의 CA 안경테 소재와 비교 시 우수한 광택특성 및 안정성을 확인 하였으며, 동등수준 이상의 기계적 물성을 보임을 확인 하였다. 결론: CA/PEG 조성물은 환경 친화적 안경테 소재로써 기존 프탈레이트계 가소제를 사용한 CA 안경테 소재를 대체할 수 있을 것으로 판단된다.

Structure and Properties of Syndiotactic Polystyrene Fibers Prepared in High-speed Melt Spinning Process

  • Hada Yoshiaki;Shikuma Haruo;Ito Hiroshi;Kikutani Takeshi
    • Fibers and Polymers
    • /
    • 제6권1호
    • /
    • pp.19-27
    • /
    • 2005
  • High-speed melt spinning of syndiotactic polystyrene was carried out using high and low molecular weight poly­mers, HM s-PS and LM s-PS, at the throughput rates of 3 and 6 g/min. The effect of take-up velocity on the structure and properties of as-spun fibers was investigated. Wide angle X-ray diffraction (WAXD) patterns of the as-spun fibers revealed that the orientation-induced crystallization started to occur at the take-up velocities of 2-3 km/min. The crystal modification was a-form. Birefringence of as-spun fibers showed negative value, and the absolute value of birefringence increased with an increase in the take-up velocity. The cold crystallization temperature analyzed through the differential scanning calorimetry (OSC) decreased with an increase in the take-up velocity in the low speed region, whereas as the melting temperature increased after the on-set of orientation-induced crystallization. It was found that the fiber structure development proceeded from lower take-up velocities when the spinning conditions of higher molecular weight and lower throughput rate were adopted. The highest tensile modulus of 6.5 GPa was obtained for the fibers prepared at the spinning conditions of LM s-PS, 6 g/min and 5 km/min, whereas the highest tensile strength of 160 MPa was obtained for the HM s-PS fibers at the take-up velocity of 2 km/min. Elongation at break of as-spun fibers showed an abrupt increase, which was regarded as the brittle-duc­tile transition, in the low speed region, and subsequently decreased with an increase in the take-up velocity. There was a uni­versal relation between the thermal and mechanical properties of as-spun fibers and the birefringence of as-spun fibers when the fibers were still amorphous. The orientation-induced crystallization was found to start when the birefringence reached -0.02. After the starting of the orientation-induced crystallization, thermal and mechanical properties of as-spun fibers with similar level of birefringence varied significantly depending on the processing conditions.

폴리프로필렌/점토 나노복합체의 하이브리드 나노구조에 따른 기계적 성질 및 결정화거동 변화 (Hybrid Nanostructure-dependent Mechanical Properties and Crystallization Behaviors of Polypropylene/Clay Nanocomposites)

  • 최기운;이한섭;강복춘;양회창
    • 폴리머
    • /
    • 제34권4호
    • /
    • pp.294-299
    • /
    • 2010
  • 아미노실란 처리된 점토를 제조하여, 이를 분자량이 서로 다른 폴리프로필렌(140 kg/mol과 410 kg/mol) 과 상용화제인 무수말레인산 그래프트 폴리프로필렌(50 kg/mol)과 함께 $170^{\circ}C$$190^{\circ}C$에서 용융혼합법으로 각각의 폴리프로필렌/점토 나노복합체를 제조하였다. 무수말레인산 그래프트 폴리프로필렌과 용융혼합과정에서 낮은 분자량의 폴리프로필렌은 점토 층 사이로 쉽게 침투하여 층간 거리를 58 $\AA$ 이상으로 증가시키지만, 첨가된 점토는 60~80 nm 두께의 응집체로 나노복합체 내에 분산상을 이룬다. 이와 달리 높은 분자량의 폴리프로필렌 기반 나노복합체에서는 점토는 27 $\AA$로 낮은 박리 정도를 보이며, 전반적으로 고른 점토 분산상을 형성한다. 분자 량 및 용융혼합공정의 차이에 따른 폴리프로필렌/점토 나노복합체의 미세 모폴로지 차이로 기계적 물성 및 결정 화거동이 관찰되었으며, 분자량 410(kg/mol)인 폴리프로필렌은 개질된 점토를 1~3 wt% 첨가함으로써 순수 폴 리프로필렌의 연성특성을 유지하면서 향상된 인장강도와 탄성률을 보였다.

500um급 8캐비티 사출금형설계 제작 및 성형기술 (Manufacturing and Molding Technology of $500{\mu}m$ 8Cavity Injection Molding System)

  • 이성희;조광환;이종원;고영배
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.444-447
    • /
    • 2008
  • Recently, the need of thin-walled injection molding and enhancement of its productivity is greatly increased. In this study, we designed and manufactured a injection molding system, which can mold a part with the thickness of $500{\mu}m$ and 8 cavity. And processing technique for the multi-cavity injection molding system, which is capable of mass productivity on the plastic parts, was considered. The problems of unbalance/imbalance on the molding process for the multi-cavity mold were predicted by numerical analysis using plastic injection molding commercial code. In addition, controllable system of melt front filling was introduced for a balanced filling using the mold temperature sensor on injection mold. It was shown that balanced filling with the suggested injection molding system was possible for $500{\mu}m$ plastic parts with 8 cavity layout.

  • PDF

Processing and Characterization of Liquid Crystalline Copoly-(ethylene terephthalate-co-2 (3)-chloro-1,4-phenylene terep hthalate)/Polycarbonate Blends

  • Rhee, Do-Mook;Ha, Wan-Shik;Youk, Ji-Ho;Yoo, Dong-Il
    • Fibers and Polymers
    • /
    • 제2권3호
    • /
    • pp.129-134
    • /
    • 2001
  • Liquid crystalline (LC) poly(ethylene terephthalate-co-2(3)-chloro-1,4-phenylene terephthalate) (50/50, mole/mole) [PECPT] was synthesized and blended with polycarbonate (PC). LC properties of PECPT and thermal, morphological, and rheological behaviors of the PECPT/PC blend were studied. PECPT showed the nematic LC phase and much longer relaxation time than poly(ethylene terephthalate) (PET). The apparent melt viscosity of PECPT was one third of that of FET. An abrupt torque change was observed during the blending process due to the orientation of LC domains. For the blends containing 10~30 wt% of PECPT, the complex viscosities were higher than that of PC. As PECPT content increases above 40 wt%, shear thinning was observed. The lowest complex viscosity was obtained at 40~50 wt%. Transesterification of PECPT and PC was confirmed by the selective chemical degradation of carbonate groups in PC.

  • PDF

급냉응고된 Mg-Zn계 합금의 기계적 성질 (Mechanical Properties of Rapidly Solidified Mg-Zn Base Alloys)

  • 김연욱
    • 한국주조공학회지
    • /
    • 제18권5호
    • /
    • pp.462-466
    • /
    • 1998
  • Interest in rapid solidification of magnesium alloys stems from the fact that conventional ingot metallurgy alloys exhibit poor strength, ductility, and corrosion resistance. Such properties can be improved by microstructural refinement via rapid solidification processing. Mg-5wt%Zn alloys have been produced as continuous strips by melt overflow technique and the strips were consolidated by hot extrusion. The yield stress, tensile strengh and ductility obtained in asextruded Mg-5wt%Zn alloy were ${\sigma}_{0.2}=152\;MPa$, ${\sigma}_{T.S{\cdot}}=263\;MPa$ and ${\varepsilon}=21.8%$. In order to evaluate the influence of additional elements on mechanical properties, Th and Zr were added in rapidly solidified Mg-5wt%Zn alloy. An 130% increase in yield stress of as-extruded Mg-5wt%Zn-3wt%Th-1wt%Zr alloy was attributed to grain refinement by rapid solidification and elemental addition.

  • PDF

근사 최적화 방법을 이용한 사출금형 설계에 관한 연구 (A Study on Injection Mold Design Using Approximation Optimization)

  • 변성광;최하영
    • 한국기계가공학회지
    • /
    • 제19권6호
    • /
    • pp.55-60
    • /
    • 2020
  • The injection molding technique is a processing method widely used for the production of plastic parts. In this study, the gate position, gate size, packing time, and melt temperature were optimized to minimize both the stress and deformation that occur during the injection molding process of medical suction device components. We used a central composite design and Latin hypercube sampling to acquire the data and adopted the response surface method as an approximation method. The efficiency of the optimization of the injection molding problem was determined by comparing the results of a genetic algorithm, sequential quadratic programming, and a non-dominant classification genetic algorithm.

The Effect of Processing Parameters on the Deposition Behavior of a Spent Fuel Surrogate in the Molten Salt Electrorefining

  • Lee, Jong-Hyeon;Kang, Young-Ho;Hwang, Sung-Chan;Kim, Eung-Ho;Yoo, Jae-Hyung
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2004년도 학술논문집
    • /
    • pp.319-329
    • /
    • 2004
  • The electrorefining experiments with an anode composed of U, Y, Gd, Nd and Ce (or U, Gd, Dy and Ce) were carried out in the KC1-LiCl eutectic melt at $500^{\circ}C$, Uranium was the major component in the cathode deposits at the high initial uranium concentration, and the separation factors of the uranium with respect to the rare earths (REs) were calculated according to the applied voltage and the uranium concentration in the molten salt. The current efficiency was inversely in proportion to the applied voltage in the range of 1.0 V to 1, 9 V (vs. STS304L). The dependency of the applied voltage on the current efficiency as well as the deposition rate was discussed in terms of the microstructural feature and crystal structure of the deposit.

  • PDF