• Title/Summary/Keyword: melt blending

Search Result 85, Processing Time 0.026 seconds

Processing and Characterization of Liquid Crystalline Copoly-(ethylene terephthalate-co-2 (3)-chloro-1,4-phenylene terep hthalate)/Polycarbonate Blends

  • Rhee, Do-Mook;Ha, Wan-Shik;Youk, Ji-Ho;Yoo, Dong-Il
    • Fibers and Polymers
    • /
    • v.2 no.3
    • /
    • pp.129-134
    • /
    • 2001
  • Liquid crystalline (LC) poly(ethylene terephthalate-co-2(3)-chloro-1,4-phenylene terephthalate) (50/50, mole/mole) [PECPT] was synthesized and blended with polycarbonate (PC). LC properties of PECPT and thermal, morphological, and rheological behaviors of the PECPT/PC blend were studied. PECPT showed the nematic LC phase and much longer relaxation time than poly(ethylene terephthalate) (PET). The apparent melt viscosity of PECPT was one third of that of FET. An abrupt torque change was observed during the blending process due to the orientation of LC domains. For the blends containing 10~30 wt% of PECPT, the complex viscosities were higher than that of PC. As PECPT content increases above 40 wt%, shear thinning was observed. The lowest complex viscosity was obtained at 40~50 wt%. Transesterification of PECPT and PC was confirmed by the selective chemical degradation of carbonate groups in PC.

  • PDF

Die Manufacturing and Repair Using Laser-Aided Direct Metal Manufacturing (레이저 직접금속조형(DMM)기술에 의한 금형제작 및 보수)

  • 지해성;서정훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.104-107
    • /
    • 2002
  • Direct Metal Manufacturing (DMM) is a new additive process that aims to take die making and metalworking in an entirely new direction. It is the blending of five common technologies : lasers, computer-aided design (CAD), computer-aided manufacturing (CAM), sensors and powder metallurgy. The resulting process creates parts by focusing an industrial laser beam onto a tool-steel work piece or platform to create a molten pool of metal. A small stream of powdered tool-steel metal is then injected into the melt pool to increase the size of the molten pool. By moving the laser beam back and forth, under CNC control, and tracing out a pattern determined by a computerized CAD design, the solid metal part is built line-by-line, one layer at a time. DMM produces improved material properties in less time and at a lower cast than is possible with traditional fabrication.

  • PDF

The Preparation and Dyeing Properties of Modified Polypropylene (개질 PP섬유의 제조 및 염색성)

  • 손태원;김삼수;이남순
    • Textile Coloration and Finishing
    • /
    • v.13 no.6
    • /
    • pp.405-412
    • /
    • 2001
  • In order to impart dyeability on to Polypropylene fiber, PP/EVA blend in the form of fibers and film were preparared using melt blending process. Ethylene vinylacetate containing 28wt% of vinylacetate(EVA(28)) was used as a copolymer. In the study of mechanical properties, tenacity and initial modulus decreased with Increasing EVA concentrations, whilst extension at break increased with increasing EVA contents. Their results in the dyeing behavior show that dye adsorption increased with increased EVA contents iota both blend fibers and films. The extent of dye uptake of red dye to modified polypropylene fibers was greater than that of Blue and Yellow counterparts due to the difference behavior of dye particles in dyeing bath.

  • PDF

The Preparation and Dyeing Properties of Modified Polypropylene (개질 PP섬유의 제조 및 염색성)

  • Son, Tae Won;Kim, Sam Su;Lee, Nam Sun
    • Textile Coloration and Finishing
    • /
    • v.13 no.6
    • /
    • pp.47-47
    • /
    • 2001
  • In order to impart dyeablility on to Polypropylene fiber, PP/EVA blend in the form of fibers and film were preparared using melt blending process. Ethylene vinylacetate containing 28wt% of vinylacetate(EVA(28)) was used as a copolymer. In the study of mechanical properties, tenacity and initial modulus decreased with increasing EVA concentrations, whilst extension at break increased with increasing EVA contents. Their results in the dyeing behavior show that dye adsorption increased with increased EVA contents for both blend fibers and films. The extent of dye uptake of red dye to modified polypropylene fibers was greater than that of Blue and Yellow counterparts due to the difference behavior of dye particles in dyeing bath.

Transesterification and Compatibilization in the Blends of Bisphenol-A Polycarbonate and Poly(trimethylene terephthalate)

  • Na Sang-Kuwon;Kong Byeong-Gi;Choi Changyong;Jang Mi-Kyeong;Nah Jae-Woon;Kim Jung-Gyu;Jo Byung-Wook
    • Macromolecular Research
    • /
    • v.13 no.2
    • /
    • pp.88-95
    • /
    • 2005
  • Melt blending of Bisphenol A polycarbonate (PC) and poly(trimethylene terephthalate) (PTT) was carried out over the entire composition range. The mixing time was varied up to 90 min. The resulting samples were analyzed by FT-IR, DSC, XRD, DMTA, $^{1}H NMR$, and SEM. The process of transesterification between the two polymers and their resulting compatibilization were observed. The behaviors of the PTT-rich and PC-rich blends were different and an equilibrium was found to exist. Peculiar behavior, which was different from that of the PTT-rich and PC-rich blends, was exhibited by the 50/50 (PTT/PC) blend.

Rheological characterization of nanoparticle filled polymeric systems

  • Kim, Byoung-Chul;Chae, Dong-Wook
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.219-219
    • /
    • 2006
  • This study focuses on the effects of dispersion method of a nanoparticle in a polymer matrix such as melt mixing, solution blending, and in-situ polymerization on the physical properties of the nanocomposites. Introduction of a nanoparticle to a polymer resulted in some unusual physical properties. In some cases the nanoparticle played a role of a nucleating agent, leading to decreasing induction time to crystallization. In addition, the dispersion state of the nanoparticle in the polymer matrix also had a significant influence on the physical properties of the nanocomposites. Hence the method of introducing the nanoparticle to the polymer made contribution to the rheological properties of the nanocomposite systems.

  • PDF

Effect of clay contents on Morphology, Thermal and Mechanical properties of Polypropylene Nanocomposites.

  • Nithitanakul Manit;Grady Brain P.;Magaraphan Rathanawan;Muksing Nattaya
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.291-291
    • /
    • 2006
  • Two different sources of clay, Na-Bentonite (Thai local clay) and Na-Montmorillonite were modified with Hexadodeccyltrimethyl ammonium bromide. The nanocomposites of polypropylene were successfully prepared via melt blending in a co-rotating twin screw extruder by using PP-g-MA as a compatibilizer at various contents of organoclays. The morphology of nanocomposites was investigated by using XRD and SEM. The results showed that the intercalated and exfoliated structures were obtained. The thermal behavior was also studied by using DSC and TGA. The degradation temperature of filled PP was greater than that of unfilled PP by 20%. And, the tensile strength and modulus were improved when a small amount of organoclays were added.

  • PDF

Effect of gypsum content on the properties of PVC/Gypsum polymer blend material (PVC/Gypsum 복합체에서 Gypsum 의 영향)

  • N. V. Gian;Thai Hoan;Kim, M. Y.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.221-224
    • /
    • 2003
  • Polyvinyl chloride (PVC)/gypsum Polymer blend materials were prepared by melt blending of PVC with gypsum and additives. Effect of gypsum content on the properties of PVC/gypsum Polymer blend material was studied by investigating physico-mechanical properties, thermal properties and morphology development. It was found that the replacement of gypsum for methylene-butadiene-sarene (MBS) component in PVC/gypsum polymer blend material enhanced the tensile strength, but gradually decreased its impact strength. Besides, with the increase of gypsum content, the elongation at break of material gradually decreased. The Presence of the different gypsum contents made a shift of g1ass transition temperature and increased the thermal stability as well as the processing temperature range of polymer blends. The observation of morphology, the results of the physico-mechanical properties and thermal properties proved simultaneously that PVC/gypsum Polymer blend material with the gypsum content of 22.56 wt.% reached the optimum results among five kinds of PVC/gypsum Polymer blend materials investigated.

  • PDF

A Study on Improvement Thermalstable of Polypropylene (Polypropylene 섬유의 내열성 증진에 관한 연구)

  • Lee, Eun Woo;Cho, In Sul;Yeo, Chang Yeall;Seo, Bo Young
    • Textile Coloration and Finishing
    • /
    • v.9 no.5
    • /
    • pp.82-87
    • /
    • 1997
  • Modified polypropylene was made of melt blending using thermostable-filler and polypropylene polymers. Modified PP were characterized for the purpose of improving a thermal-property of PP polymer with the composition of 5wt %, 10wt % of thermostable-filler. The structure and thermal-property were determined from IR, DSC, TGA, and SEM instruments. From the results of this study, it found the following facts. Firstly, it was found that the modified PP was mixed with PP and thermostable-filler qualitativly. Secondaty, thermal property of modified PP was improved steadily according to increase of ratio of thermostable-filler.

  • PDF

Properties of Original Thermoplastic Polyurethane (TPU)/Plasticized Poly(vinyl chloride) (PVC) and Recycling TPU/PVC Blends (열가소성 폴리우레탄과 가소화된 폴리비닐 클로라이드 블렌드의 특성)

  • Yoo, Hye-Jin;Lee, Young-Hee;Hyuk, Bang-Yun;Hyeob, Beak-Sung;Kim, Han-Do
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.9-12
    • /
    • 2001
  • Blending is an easy and popular means to achieve a desired set of characteristic properties. The blends, by melt mixing of thermoplastic materials and elastomer, have received considerable attention in recent years. It is well known that nearly all blends comprise one polymer domain dispersed in the matrices of the other polymer [1]. (omitted)

  • PDF