• Title/Summary/Keyword: melon

Search Result 582, Processing Time 0.029 seconds

Characterization of Melon necrotic spot virus Isolated from Muskmelon

  • Park, Gug-Seoun;Kim, Jae-Hyun;Kim, Jeong-Soo
    • The Plant Pathology Journal
    • /
    • v.19 no.2
    • /
    • pp.123-127
    • /
    • 2003
  • A severe disease of muskmelon (Cucumis melo cv. Alsnight) grown on rockwool in a plastic house was characterized by leaf and stem necrosis followed by death of the plants. In 2001, an isolate of Melon necrotic spot virus-MN (MNSV-MN) of the genus Camovirus was identified as the causal agent of the disease on the basis of biological reactions and nucleotide sequence analyses of coat protein (CP) gene. MNSV-MN induced necrotic local lesions on mechanically inoculated leaves and systemic necrotic spots on the upper leaves of melon cvs. Alsnight, Rui III, Party, Imperial, and Seolhang. However, the inoculated leaves of watermelon and cucumber showed only necrotic lesions. DsRNAs extracted from the melon infected with MNSV-MN were separated into three components. Molecular sizes of the dsRNAs were estimated at approximately 4.5, 1.8, and 1.6 kbp. The amplified cDNA products of CP gene for MNSV-MN by RT-PCR showed approximately 1.2 kbp. The amplified DNA was digested to three fragments by MspI treatment. The cDNA of the genomic RNA of MNSV-MN was cloned and the region deduced to encode the CP was sequenced. The CP coding region, located near 3' end of the genome, consisted of 1,170 nucleotides and had the potential to encode a 390 amino acid protein. The nucleotide and amino acid sequences of MNSV-MN CP gene were 84.0-94.6% and 90.8-94.9% identical with other MNSV isolates found in the GeneBank database, respectively. This is the first report on the occurrence of MNSV in Korea.

Effects of Phosphogypsum on the Growth of Oriental Melon and Soil Properties (시설재배 참외의 생육과 토양 특성에 미치는 인산석고의 효과)

  • Chung, Jong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.6
    • /
    • pp.334-339
    • /
    • 2005
  • Although phosphogypsum can have profound effects on both the physical and chemical properties of certain soils with supplying the essential elements, no widespread use of by-product phosphogypsum will be made unless such uses pose no threat to the public health and soil contaminations. This study was conducted to evaluate the effects of phosphogypsum on the growth of oriental melon and soil properties in plastic film house. Phosphogypsum was treated at the rate of $70kg\;CaO\;10a^{-1}$ and the effects were compared with the treatment of Ca-Mg carbonate. In the treatment of phosphogypsum, early growth of oriental melon was significantly increased comparing to the growth in the Ca-Mg carbonate treatment. Total fruit yield was not different between the treatments of phosphogypsum and Ca-Mg carbonate, but marketable fruit yield was higher in the phosphogypsum treatment. Although Ca and S contents in oriental melon were increased in the phosphogypsum treatment, contents of toxic heavy metals including As, Cd, Cr, Cu, and Pb were not different between the two treatments. Also, soil pH and contents of extractable toxic metals in the soil were not significantly different between the two treatments after the experiment. These results suggest that phosphogypsum can be a valuable substitute for lime materials in high pH soils of plastic film house.

Volatile Flavor Components in Watermelon(Citrullus vulgaris S.) and Oriental Melon(Cucumis melo L.) (국내산 수박(Citrullus vulgaris S.) 과 참외(Cucumis melo L.) 의 휘발성 향기성분)

  • Kim, Kyong-Su;Lee, Hae-Jung;Kim, Sun-Min
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.322-328
    • /
    • 1999
  • Volatile flavor components of watermelon (Citrullus vulgaris S.) and oriental melon (Cucumis melo L.) obtained by simultaneous steam distillation and extraction apparatus were separated by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). Thirty seven and fifty five volatile flavor components were identified in watermelon and oriental melon, respectively. (Z)-3-Nonen-1-ol, (Z,Z)-3,6-nonadien-1-ol, (E,Z)-2,6-nonadienal and (E)-2-nonenal containing unsaturated nine carbon atoms were the characteristic flavor components of watermelon. $C_{9}-Unsaturated$ esters including (Z)-3-nonenyl acetate, (Z)-6-nonenyl acetate, (Z,Z)-3,6-nonadienyl acetate and thioester were important components in the flavor profile of oriental melon.

  • PDF

Marker-Assisted Selection for Monoecy in Chamoe (Cucumis melo L.) (성발현 연관 분자마커를 이용한 단성화 참외 선발)

  • Bang, Sun-Woong;Song, Kihwan;Sim, Sung Chur;Chung, Sang Min
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.134-141
    • /
    • 2016
  • The DNA marker T1ex, originally developed from melon (Cucumis melo L.) for monoecy, was employed in chamoe, which is referred to as oriental melon. This marker shows size variations in monoecious melon. However, in chamoe, no such detrimental size variation was found in monoecious chamoe, and 99% association between flower phenotypes and genotypes of the T1ex marker was observed in 106 lines of chamoe. To evaluate the efficacy of the T1ex marker for marker-assisted selection (MAS), a total of 240 plants of chamoe breeding lines were screened using the T1ex marker. Among these, 98 varieties were selected. Although the T1ex marker might not be useful for MAS in melon, we found 100% concordance between genotypes and phenotypes for sex expression in chamoe. These results suggest that the T1ex marker will be a useful resource for MAS for monoecy in chamoe.

Suppression of melon powdery mildew and tomato leaf mold disease by the antifungal activity of tea tree (Melaleuca alternifolia) essential oil

  • Lee, Mun Haeng;Oh, Sang-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1071-1081
    • /
    • 2020
  • Essential oils (EOs) have been shown to be plant-extracted antimicrobial agents. However, there are limited studies investigating the efficacy of EOs against pathogens. Among them, tea tree oil (TTO) is extracted from Melaleuca alternifolia, which is also used as an antifungal agent. In this study, the effect of TTO was investigated on the suppression of melon powdery mildew caused by Podosphaera xanthii and tomato leaf mold disease caused by Passalora fulva. Both powdery mildew and leaf mold diseases were significantly suppressed by a spray of TTO. Eighty percent of powdery mildew and 81% of leaf mold disease of the control value were suppressed by 0.5% TTO liquid, when sprayed 3 times every 7 days on the melon and tomato leaves. Inhibition of mycelial growth was also greatly affected by different concentrations of TTO against four different fungal pathogens. Ninety-eight percent of Pseudocercospora fuligena, 97% of P. fulva, 95% of Botrytis cinerea, and 94% of Phytophthora infestans mycelial growth were inhibited by 0.2% to 1.0% of TTO contained in plate media, respectively. However, phytotoxicity in plants by the TTO treatments was revealed when melon and tomato leaves were sprayed with a 1% and 2% concentration of TTO, respectively. Therefore, our findings show that TTO has high antifungal effects against various plant pathogens that occur during crop cultivation. We also suggest that when applying TTO to plant leaves, it is necessary to establish an accurate treatment concentration for different crops.

Antioxidant and Hepatoprotective Activities of Bitter Melon (Momordica charantia Linn.) Leaves against Oxidative Stress (산화적 스트레스에 대한 여주(Momordica charantia Linn.)잎의 항산화 활성 및 간세포 보호능)

  • Jeon, Ahyeong;Cheon, Wonyoung;Yoon, Jimin;Kim, Dae-Jung;Kim, Younghwa
    • Journal of the Korean Society of Food Culture
    • /
    • v.35 no.6
    • /
    • pp.597-604
    • /
    • 2020
  • This study examined the bioactive compound content and the antioxidant activities of bitter melon (Momordica charantia Linn.) leaves. The content of vitamin C, beta-carotene, and total carotenoids was 69.77, 45.68, and 65.08 mg/100 g, respectively. To investigate the antioxidant capacity, bitter melon leaves were extracted using various concentrations of ethanol (60, 80, or 100%). Highest content of total polyphenols (18.07 mg gallic acid equivalent/g) and flavonoids (4.53 mg cathechin equivalent/g) was found in the 100% ethanolic extract of the leaves (E100). Also, the E100 extract showed the highest levels of 2,2'azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and α-α-diphenyl-β-picrylhydrazyl (DPPH) free radical scavenging activities. Reducing power was also the highest (39.21 mg Trolox equivalent/g) in E100 extract. The E100 extract effectively inhibited lipid peroxidation by 91.45% compared to the control group. Also, the E100 extract showed a cytoprotective effect against oxidative stress in HepG2 cells and decreased the generation of intracellular reactive oxygen species. These results suggest that bitter melon leaves could be regarded as a potential source of natural antioxidants.

Analysis of Microbiological Contamination in Cultivation and Distribution Stage of Melon

  • Park, Kyeong-Hun;Yun, Hye-Jeong;Kim, Won-Il;Kang, Jun-Won;Millner, Patricia D.;Micallef, Shirley A.;Kim, Byeong-Seok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.615-622
    • /
    • 2013
  • The purpose of this study was to evaluate microbial contamination of melons in Korea. A total of 123 samples including melon fruits, leaves, seeds, soils, and irrigation water were collected from farms and markets to detect total aerobic bacteria, coliform, Escherichia coli, and pathogenic bacteria such as Bacillus cereus, Listeria monocytogenes, Salmonella spp., and Staphylococcus aureus. Samples were collected from Iksan and Nonsan farms to monitor bacterial levels on pre-market melons. The total aerobic and coliform bacteria on melon cultivation were between 0.43 and 6.65 log CFU $g^{-1}$, and 0.67 and 2.91 log CFU $g^{-1}$, respectively. Bacillus cereus, a fecal coliform, was detected in soils and melon leaves from Iksan farm at 2.95, 0.73 log CFU $g^{-1}$, respectively, and in soils from Nonsan farm at 3.16 log CFU $g^{-1}$. Market melon samples were collected to assay bacterial load on melon being sold to consumers. The contamination levels of total aerobic bacteria in agricultural markets, big-box retailers, and traditional markets were 4.82, 3.94, 3.99 log CFU $g^{-1}$, respectively. The numbers of coliform in melon on the markets ranged from 0.09 to 0.49 log CFU $g^{-1}$. Listeria monocytogenes, Salmonella spp., and Staphylococcus aureus were not detected in any samples. The count of total aerobic bacteria on melon seeds ranged from 0.33 to 3.34 log CFU $g^{-1}$. This study found that irrigation water, soil, manure and various farm work activities including post-harvest processes were latent sources of microbial contamination. These results suggest that hygienic management and monitoring of soil, water, and agricultural material should be performed to reduce microbial contamination in melon production.

Beneficial Effect of Heat Fans on Quality and Yield of Korean Melon Cultivated in Greenhouses at Winter Season (히터팬 처리가 저온기 하우스 참외의 품질 및 수량에 미치는 긍정적 영향)

  • Shin, Yong Seub;Lee, Ji Eun;Oh, Su Whan;Cheung, Joung Do;Sohn, Hyoung Rac;Do, Han Woo;Kim, Mi Kyung
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.188-193
    • /
    • 2017
  • The purpose of this study was to investigate the changes of environmental conditions and the quality and yield of melon fruit by heat fan operation in greenhouses at winter season. The average daily temperature inside the tunnels during January 1 to 31, 2017 was $0.9^{\circ}C$ higher than that of the control $17.8^{\circ}C$. The air flow rate of heater fan treatment was 4.8 times higher than the control (untreated $0.05m{\cdot}s^{-1}$) at 20cm above the ground where the korean melon grew. The temperature of the heater pan was $5.6^{\circ}C$ higher than that of the untreated at $35.3^{\circ}C$ and the relative humidity was 8.1% lower than that of the untreated at 39.1%. The flowering rate of the heater fan treatment was 96%, 5% higher than the control. The number of first harvest days of heater fan treatment was shortened by 4 days than that of untreated treatment. Fruit quality and marketable fruit yield increased by 3.4% and 38% compared to untreated respectively, the heater fan treatment increased the temperature inside the greenhouse and air flow rete, which were beneficial for growing the korean melon in greenhouses at winter season.

First Record of the Melon-headed Whale (Peponocephala electra) in Korean Waters

  • Kim, Hyun-Woo;Moon, Dae-Yeon;Choi, Seok-Gwan;An, Yong-Rock;Kim, Zang-Geun
    • Animal Systematics, Evolution and Diversity
    • /
    • v.26 no.1
    • /
    • pp.59-62
    • /
    • 2010
  • First record of a stranded Melon-headed whale (Peponocephala electra) on the south-east coast of Korea was described. Full body and skull measurements were taken from the specimen. It was identified as P. electra by unique pointed flipper tips. Skull measurements of the specimen corresponded to condylobasal length proportions given in the previous descriptions of the holotype.

Phytochemical Constituents of Bitter Melon (Momordica charantia)

  • Kim, Hyun Young;Mok, So-Youn;Kwon, Su Hyeong;Lee, Dong Gu;Cho, Eun Ju;Lee, Sanghyun
    • Natural Product Sciences
    • /
    • v.19 no.4
    • /
    • pp.286-289
    • /
    • 2013
  • Phytochemical constituents were isolated from bitter melon (the fruits of Momordica charantia) through open column chromatography. Their structures were identified as ${\beta}$-sitosterol (1), (23E)-$5{\beta}$,19-epoxycucurbita-6,23-diene-$3{\beta}$,25-diol (2), daucosterol (3), uracil (4), and allantoin (5) by interpretation of spectroscopic analysis including MS and $^1H$- & $^{13}C$-NMR. Among them, allantoin (5) was isolated from this plant for the first time.