• Title/Summary/Keyword: melanin pigmentation

Search Result 142, Processing Time 0.018 seconds

Tyrosinase Inhibitory Effect of (E)-2-(substituted benzylidene)-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-one Derivatives ((E)-2-(substituted benzylidene)-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-one 유도체들의 tyrosinase 활성억제 효과)

  • Lee, Eun Kyeong;Kim, Ju Hyun;Moon, Kyoung Mi;Ha, Sugyeong;Noh, Sang-Gyun;Kim, Dae Hyun;Lee, Bonggi;Kim, Do Hyun;Kim, Su Jeong;Ullah, Sultan;Moon, Hyung Ryong;Chung, Hae Young
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.139-148
    • /
    • 2017
  • The inhibition of tyrosinase, a key enzyme in mammalian melanin synthesis, plays an important role in preventing skin pigmentation and melanoma. Therefore, tyrosinase inhibitors are very important in the fields of medicine and cosmetics. However, only a few tyrosinase inhibitors are currently available because of their toxic effects on skin or lack of selectivity and stability. Therefore, we synthesized a novel series of (E)-2-(substituted benzylidene)-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-one derivatives and evaluated their inhibitory effects on mushroom tyrosinase, with the aim of discovering a novel tyrosinase inhibitor. Among 19 derivatives, MHY3655 ($IC_{50}=0.1456{\mu}M$) showed the strongest inhibitory effect on tyrosinase activity compared to kojic acid ($IC_{50}=17.2{\mu}M$), a well-known tyrosinase inhibitor. In addition, MHY3655 showed competitive inhibition on Lineweaver-Burk plots. We confirmed that MHY3655 strongly interacts with mushroom tyrosinase residues through the docking simulation. Substitutions with a hydroxy group at both R2 and R4 in the phenyl ring indicated that these groups play a major role in the high binding affinity to tyrosinase. Further, MHY3655 did not show cytotoxicity at the concentrations tested in B16F10 melanoma cells. In conclusion, the novel compound MHY3655 potentially shows tyrosinase inhibitory activity, and it could be used as an ingredient in whitening cosmetics.

Effect of Halophilic Bacterium, Haloarcula vallismortis, Extract on UV-induced Skin Change (호염 미생물(Haloarcula vallismortis) 용해물의 자외선유발 피부변화에 대한 효과)

  • Kim, Ji Hyung;Shin, Jae Young;Hwang, Seung Jin;Kim, Yun Sun;Kim, Yoo Mi;Gil, So Yeon;Jin, Mu Hyun;Lee, Sang Hwa
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.341-350
    • /
    • 2015
  • Skin carrys out protective role against harmful outer environment assaults including ultraviolet radiation, heavy metals and oxides. Especially, ultraviolet-B (UVB) light causes inflammatory reactions in skin such as sun burn and erythma and stimulates melanin pigmentation. Furthermore, the influx of UVB into skin cells causes DNA damage in keratinocytes and dermal fibroblasts, inhibition of extracellular matrix (ECM) synthesis which leads to a decrease in elasticity of skin and wrinkle formation. It also damages dermal connective tissue and disrupts the skin barrier function. Prolonged exposure of human skin to UVB light is well known to trigger severe skin lesions such as cell death and carcinogenesis. Haloarcula vallismortis is a halophilic microorganism isolated from the Dead Sea, Its growth characteristics have not been studied in detail yet. It generally grows at salinity more than 10%, but the actual growth salinity usually ranges between 20 to 25%. Because H. vallismortis is found mainly in saltern or salt lakes, there could exist defense mechanisms against strong sunlight. One of them is generation of additional ATP using halorhodopsin which absorbs photons and produces energy by potential difference formed by opening the chloride ion channel. It often shows a color of pink or red because of their high content of carotenoid pigments and it is considered to act as a defense mechanism against intense UV irradiation. In this study, the anti-inflammatory effect of the halophilic microorganism, H. vallismortis, extract was investigated. It was found that H. vallismortis extract had protective effect on DNA damage induced by UV irradiation. These results suggest that the extract of halophilic bacterium, H. vallismortis could be used as a bio-sunscreen or natural sunscreen which ameliorate the harmful effects of UV light with its anti-inflammatory and DNA protective properties.