• 제목/요약/키워드: mel scale filter bank

검색결과 7건 처리시간 0.018초

청각 주파수 응답에 기반한 자동 모음 개시 지점 탐지 (Automatic Vowel Onset Point Detection Based on Auditory Frequency Response)

  • 장한;김학태;정길도
    • 한국산학기술학회논문지
    • /
    • 제13권1호
    • /
    • pp.333-342
    • /
    • 2012
  • 이 논문에서는 인간 청각 시스템에 기반한 모음 개시 지점 (VOP) 탐지 방법을 제시하였다. 이 방법을 통해 '지각의' 주파수 범위, 즉 선형 음향 주파수에서의 Mel Scale을 보여준 후 일련의 삼각 Mel-weighted Filter Bank를 만들어 인간의 청각 시스템에서 대역 필터링 기능을 시뮬레이션하였다. 이러한 비선형 임계 대역 Filter Bank는 데이터 차원수를 크게 감소시키고 비선형적으로 간격을 둔 Mel 스펙트럼에서 더욱 효과적으로 포먼트를 생성하기 위해 조파들의 영향을 제거해준다. Mel 스펙트럼의 첨두 에너지 합은 각 프레임의 특징으로 추출하고 에너지 진폭이 급격히 상승하기 시작할 때의 특성은 Gabor 윈도우를 사용하여 VOP로 탐지한다. 실험 결과를 통해서 다른 종류의 자음들과 연결된 12개의 모음들을 포함하는 한 단어 데이터베이스에 대한 제안된 방법의 평균 정확도는 단시간 에너지와 zero-crossing 비율에 기반을 둔 다른 모음 탐지 방법들보다 높은 72.73% 이상임을 확인하였다.

Improvements on MFCC by Elaboration of the Filter Banks and Windows

  • Lee, Chang-Young
    • 음성과학
    • /
    • 제14권4호
    • /
    • pp.131-144
    • /
    • 2007
  • In an effort to improve the performance of mel frequency cepstral coefficients (MFCC), we investigate the effects of varying the parameters for the filter banks and their associated windows on speech recognition rates. Specifically, the mel and bark scales are combined with various types of filter bank windows. Comparison and evaluation of the suggested methods are performed by two independent ways of speech recognition and the Fisher discriminant objective function. It is shown that the Hanning window based on the bark scale yields 28.1% relative performance improvements over the triangular window with the mel scale in speech recognition error rate. Further work on incorporating PCA and/or LDA would be desirable as a postprocessor to MFCC extraction.

  • PDF

깊은 신경망을 이용한 오디오 이벤트 분류 (Audio Event Classification Using Deep Neural Networks)

  • 임민규;이동현;김광호;김지환
    • 말소리와 음성과학
    • /
    • 제7권4호
    • /
    • pp.27-33
    • /
    • 2015
  • This paper proposes an audio event classification method using Deep Neural Networks (DNN). The proposed method applies Feed Forward Neural Network (FFNN) to generate event probabilities of ten audio events (dog barks, engine idling, and so on) for each frame. For each frame, mel scale filter bank features of its consecutive frames are used as the input vector of the FFNN. These event probabilities are accumulated for the events and the classification result is determined as the event with the highest accumulated probability. For the same dataset, the best accuracy of previous studies was reported as about 70% when the Support Vector Machine (SVM) was applied. The best accuracy of the proposed method achieves as 79.23% for the UrbanSound8K dataset when 80 mel scale filter bank features each from 7 consecutive frames (in total 560) were implemented as the input vector for the FFNN with two hidden layers and 2,000 neurons per hidden layer. In this configuration, the rectified linear unit was suggested as its activation function.

변형된 Wavelet 변환을 이용한 한국어 숫자음 인식에 관한 연구 (Isolated Korean Digits Recognition Using Modified Wavelet Transform)

  • 지상문
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1993년도 학술논문발표회 논문집 제12권 1호
    • /
    • pp.113-116
    • /
    • 1993
  • 본 논문에서는 변형된 wavelet 변환을 통해 추출한 특징벡터를 이용하여 한국어 숫자음을 대상으로 한 음성인식기를 구현하였다. wavelet 변환은 시간 및 주파수 영역에 대해 다중해상도(multiresolution)를 가지는 신호분석법이다. 본 연구에서는 계산량의 감소와 넓은 주파수 대역을 분석하기 위해, mother wavelet의 형태를 분석 주파수 대역에 따라 변화시키는 방법을 제안하였다. 기존의 wavelet 변환으로 실험한 결과 86.5%의 인식율을 얻었고, 변형된 wavelet 변환의 경우 96%의 인식율을 얻었으며 계산량이 감소하였다. 이와 함께 음성인식에서 널리 사용되는 특징 파라미터인 멜켑스트럼과 FFT 멜스케일 필터 대역(mel scale filter bank)과 비교 실험한 결과 인식율의 향상을 보였다. 이는 제안한 방법이 고주파 대역의 세밀한 시간 해상도와 저주파 대역의 세밀한 주파수 해상도를 지니는데 기인하는 것으로 판단된다.

  • PDF

Convolutional Neural Network based Audio Event Classification

  • Lim, Minkyu;Lee, Donghyun;Park, Hosung;Kang, Yoseb;Oh, Junseok;Park, Jeong-Sik;Jang, Gil-Jin;Kim, Ji-Hwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권6호
    • /
    • pp.2748-2760
    • /
    • 2018
  • This paper proposes an audio event classification method based on convolutional neural networks (CNNs). CNN has great advantages of distinguishing complex shapes of image. Proposed system uses the features of audio sound as an input image of CNN. Mel scale filter bank features are extracted from each frame, then the features are concatenated over 40 consecutive frames and as a result, the concatenated frames are regarded as an input image. The output layer of CNN generates probabilities of audio event (e.g. dogs bark, siren, forest). The event probabilities for all images in an audio segment are accumulated, then the audio event having the highest accumulated probability is determined to be the classification result. This proposed method classified thirty audio events with the accuracy of 81.5% for the UrbanSound8K, BBC Sound FX, DCASE2016, and FREESOUND dataset.

깊은 신경망을 이용한 오디오 이벤트 검출 (Audio Event Detection Using Deep Neural Networks)

  • 임민규;이동현;박호성;김지환
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권1호
    • /
    • pp.183-190
    • /
    • 2017
  • 본 논문에서는 깊은 신경망을 이용한 오디오 이벤트 검출 방법을 제안한다. 오디오 입력의 매 프레임에 대한 오디오 이벤트 확률을 feed-forward 신경망을 적용하여 생성한다. 매 프레임에 대하여 멜 스케일 필터 뱅크 특징을 추출한 후, 해당 프레임의 전후 프레임으로부터의 특징벡터들을 하나의 특징벡터로 결합하고 이를 feed-forward 신경망의 입력으로 사용한다. 깊은 신경망의 출력층은 입력 프레임 특징값에 대한 오디오 이벤트 확률값을 나타낸다. 연속된 5개 이상의 프레임에서의 이벤트 확률값이 임계값을 넘을 경우 해당 구간이 오디오 이벤트로 검출된다. 검출된 오디오 이벤트는 1초 이내에 동일 이벤트로 검출되는 동안 하나의 오디오 이벤트로 유지된다. 제안된 방법으로 구현된 오디오 이벤트 검출기는 UrbanSound8K와 BBC Sound FX자료에서의 20개 오디오 이벤트에 대하여 71.8%의 검출 정확도를 보였다.

DHMM 음성 인식 시스템을 위한 양자화 기반의 화자 정규화 (Quantization Based Speaker Normalization for DHMM Speech Recognition System)

  • 신옥근
    • 한국음향학회지
    • /
    • 제22권4호
    • /
    • pp.299-307
    • /
    • 2003
  • 화자독립 음성인식기에서 화자사이의 성도 길이의 영향을 최소화시켜 인식 성능을 개선하는 화자 정규화에 대한 많은 연구가 있어 왔다. 본 연구에서는 벡터양자화기를 이용하여 화자 검증이 가능하다는 사실에 착안하여 벡터 양자화기를 이용한 비교적 간단한 선형 워핑 화자정규화방법을 제안한다. 제안하는 방법에서는 먼저 정규화에 이용될 최적의 코드북을 생성한 다음, 이 코드 북을 이용하여 화자의 선형 워핑계수를 추출하고 추출된 워핑계수는 멜 켑스트럼 추출시에 사용되는 멜스케일 필터뱅크를 워핑하기 위해 이용된다. 본고에서 제안한 워핑계수 추출 및 적용 방법의 성능을 확인하기 위해 이산 HMM을 이용한 13가지의 단음절 한글 숫자음 인식기를 이용하여 인식실험을 수행하였으며, 실험 결과 약 29%의 오인식률 감소를 보여 제안하는 화자 정규화방법이 다른 라인서치 워핑계수추출 방법보다 간단한 동시에 효용가치가 있음을 확인하였다.