• Title/Summary/Keyword: mega disaster

Search Result 18, Processing Time 0.028 seconds

Studies into a high performance composite connection for high-rise buildings

  • Lou, G.B.;Wang, A.J.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.789-809
    • /
    • 2015
  • This paper presents experimental and numerical studies into the structural behavior of a high performance corbel type composite connection adopted in Raffles City of Hangzhou, China. Physical tests under both monotonic and quasi-static cyclic loads were conducted to investigate the load carrying capacities and deformation characteristics of this new type of composite connection. A variety of structural responses are examined in detail, including load-deformation characteristics, the development of sectional direct and shear strains, and the history of cumulative plastic deformation and energy. A three-dimensional finite element model built up with solid elements was also proposed for the verification against test results. The studies demonstrate the high rigidity, strength and rotation capacities of the corbel type composite connections, and give detailed structural understanding for engineering design and practice. Structural engineers are encouraged to adopt the proposed corbel type composite connections in mega high-rise buildings to achieve an economical and buildable and architectural friendly engineering solution.

Elasto-plastic time history analysis of a 117-story high structure

  • Wu, Xiaohan;Li, Yimiao;Zhang, Yunlei
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.7-17
    • /
    • 2017
  • In Chinese Design Codes, for super high-rise buildings with complex structural distribution, which are regarded as code-exceeding buildings, elasto-plastic time history analysis is needed to validate the requirement of "no collapse under rare earthquake". In this paper, a 117-story super high-rise building is discussed. It has a height of 597 m and a height-width ratio of 9.5, which have both exceeded the limitations stipulated by the Chinese Design Codes. Mega columns adopted in this structure have cross section area of about $45m^2$ at the bottom, which is infrequent in practical projects. NosaCAD and Perform-3D, both widely used in nonlinear analyses, were chosen in this study, with which two model were established and analyzed, respectively. Elasto-plastic time history analysis was conducted to look into its seismic behavior, emphasizing on the stress state and deformation abilities under intensive seismic excitation.From the comparisons on the results under rare earthquake obtained from NosaCAD and Perform-3D, the overall responses such as roof displacement, inter story drift, base shear and damage pattern of the whole structure from each software show agreement to an extent. Besides, the deformation of the structure is below the limitation of the Chinese Codes, the time sequence and distribution of damages on core tubes are reasonable, and can dissipate certain inputted energy, which indicates that the structure can meet the requirement of "no collapse under rare earthquake".

Earthquake Design and Reinforcement Countermeasure for Transmission Line and Substation (송변전설비의 내진설계 및 보강대책)

  • Min, Byeong-Wook;Kim, Kang-Kyu;Han, Byung-Jun;Park, In-Joung;Kim, Young-Dal
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.432-433
    • /
    • 2011
  • Even though Korea has very low possibility that a big earthquake occurs like in Japan, China, Taiwan and United States of America, because it is located on the interior of Eurasian Plate, the earthquake which was struck northeast Japan in March 11th, 2011 gave a big shock to Korean. And small-medium earthquakes have been observed 922 times in Korea since 1978 when an earthquake hit Hong-seong and a seismographic station started observation. Moreover, the number of quakes has been on the increase. In case a big earthquake occurs like in northeast Japan, it would be a terrible disaster for Korean power utilities and brings mega effects on Korean society and economy. So it is necessary to apply anti-earthquake design for new power facilities and to reinforce existing facilities. Therefore, this paper would present anti-earthquake design for transmission line and substation and reinforcement measures for existing facilities.

  • PDF

A Spatial Analysis of Shelter Capacity Using Floating Population (유동인구를 활용한 대피소 수용 능력 분석)

  • Kim, Mi-Kyeong;Kang, Sinhye;Kim, Sang-Pil;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Seoul, a mega city, contains many features of the modern city. When the disaster or emergency occurs in Seoul, the place for shelter is required for evacuation urgently. There are currently the numbers of shelters in Seoul City, which can hold the twice more capacity of population of Seoul. However, the population distribution fluctuation in the day and the night needs to be considered. Therefore, in order to analyze the actual capacity of shelter, it is necessary to consider the dynamic characteristics of population distribution in the metropolitan area. In the study, the substantial accessibility and the capacity of shelters in Seoul were analyzed by the floating population data of the metropolitan area. The accessibility of shelter was investigated through a network analysis that includes the pedestrian road data, while the capacity of shelter was analyzed by the local differences of daytime population distributions. Finally it was possible to identify the vulnerable areas on the basis of the distribution of shelter in the region.

Highway flood hazard mapping in Thailand using the Multi Criteria Analysis based the Analytic Hierarchy Process

  • Budhakooncharoen, Saisunee;Mahadhamrongchai, Wichien;Sukolratana, Jiraroth
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.236-236
    • /
    • 2015
  • Flood is one of the major natural disasters affecting millions of people. Thailand also, frequently faces with this type of disaster. Especially, 2011 mega flood in Central Thailand, inundated highway severely attributed to the failure of national economic and risk to life. Lesson learned from such an extreme event caused flood monitoring and warning becomes one of the sound mitigations. The highway flood hazard mapping accomplished in this research is one of the strategies. This is due to highway flood is the potential risk to life and limb, and potential damage to property. Monitoring and warning therefore help reducing live and property losses. In this study, degree of highway flood hazard was assessed by weighting factors for each cause of the highway flood using Multi Criteria Analysis (MCA) based Analytic Hierarchy Process (AHP). These weighting factors are the essential information to classify the degree of highway flood hazard to enable pinpoint on flood monitoring and flood warning in hazard areas. The highway flood causes were then investigated. It was found that three major factors influence to the highway flood are namely the highway characteristics, the hydrological characteristics and the land topography characteristics. The weight of importance for each cause of the highway flood in the whole country was assessed by weighting 3 major factors influence to the highway flood. According to the result of MCA analysis, the highway, the hydrological and the land topography characteristics were respectively weighted as 35, 35 and 30 percent influence to the cause of highway flood. These weighting factors were further utilized to classify the degree of highway flood hazard. The Weight Linear Combination (WLC) method was used to compute the total score of all highways according to each factor. This score was later used to categorize highway flood as high, moderate and low degree of hazard levels. Highway flood hazard map accomplished in this research study is applicable to serve as the handy tool for highway flood warning. However, to complete the whole warning process, flood water level monitoring system for example the camera gauge should be installed in the hazard highway. This is expected to serve as a simple flood monitor as part of the warning system during such extreme or critical event.

  • PDF

Influence Factors for the Safety Assessment on the GPE Blocks during On-shore Transportation (GPE 블록의 연안운송시 안전성 평가를 위한 영향인자)

  • Kim, Sung-Chang;Hong, Ki-Sup;Shin, Dae-Kyun;Yu, Byeong-Seok;Kim, Kwan-Hong;Suh, Yong-Seok;Paeck, Se-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.595-602
    • /
    • 2009
  • Great number of ships has been built by Korean Shipyards since early of 2,000 due to the expanding worldwide trade. Most of shipyards have enlarged the weight of erection block and many blocks have been assembled in block fabrication factories outside the shipyards to reduce the shipbuilding period. Especially, Giga blocks that exceed 2,000 tons are often assembled by the block fabrication factories outside the shipyard. Generally, the blocks are transported to building dock in shipyard by towing barges. Accident can be occurred during the sea transportation and it may bring about not only the delay of delivery but also a disaster on the ocean environments. Transportation condition of GPE (Grand Pre-Erection) block differs from the ocean going conditions of marine vessels. Special consideration should be included before transportation work in order to guarantee the safety of GPE blocks and barge carriers. In this paper, several examples, which have been investigated to set up the safety standard of transportation of the GPE blocks on coastal routes, are introduced. For the barge transportation on coastal sea route, the design criteria are discussed, considering the design wave, the acceleration induced by wave, structural strength, and the fixture condition of blocks.

Evaluation on Geological Structures to Secure Long-term Safety of Nuclear Facility Sites (원자력시설물 부지의 장기적 안전성 확보를 위한 지질구조 평가)

  • Jin, Kwangmin;Kim, Young-Seog
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.149-166
    • /
    • 2018
  • Many large earthquakes have continuously been reported and resulted in significant human casualties and extensive damages to properties globally. The accident of Fukushima nuclear power plant in Japan was caused by a mega-tsunami, which is a secondary effect associated with the Tohoku large earthquake (M=9.0, 2011. 3. 11.). Most earthquakes occur by reactivation of pre-existing active faults. Therefore, the importance of paleoseismological study have greatly been increased. The Korean peninsula has generally been considered to be a tectonically stable region compared with neighboring countries such as Japan and Taiwan, because it is located on the margin of the Eurasian intra-continental region. However, the recent earthquakes in Gyeongju and Pohang have brought considerable insecurity on earthquake hazard. In particular, this region should be secure against earthquake, because many nuclear facilties and large industrial facilities are located in this area. However, some large earthquakes have been reported in historic documents and also several active faults have been reported in southeast Korea. This study explains the evaluation methods of geological structures on active fault, fault damage zone, the relationship between earthquake and active fault, and respect distance. This study can contribute to selection of safe locations for nuclear facilities and to earthquake hazards and disaster prevention.

Evaluation test of applicability of Compressed Air Foam fire extinguishing system for train fire at rescue station in Subsea tunnel (해저터널 구난역 열차화재시 압축공기포(Compressed Air Foam) 소화설비의 적용성 평가 실험)

  • Park, Byoung-Jik;Shin, Hyun-Jun;Yoo, Yong-Ho;Park, Jin-Ouk;Kim, Hwi-Seong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.413-418
    • /
    • 2016
  • Recently, a mega project such as Korea-China or Korea-Japan undersea tunnel project has been emerged for detail discussion and the interest in undersea tunnel is on the rise. More severe damage by train fire is expected in undersea tunnel comparing to ground tunnel and thus the study on more efficient fire extinguishing system, besides existing disaster prevention design is underway. To that end, a full-scale fire tests using CAF fire extinguishing system which has been developed by modifying traditional foam fire extinguishing system for fire suppression at rescue station in timely manner were conducted over 7 times. The test was conducted after setting the rescue station in virtual tunnel with a car of KTX. As a result of using compressed air foam directly to the fire source, 30 liter of Heptane combustibles was extinguished within 1 minutes. Applicability of compressed air foam to train fire at rescue station in undersea tunnel was has been proven and further study is considered required while changing the nozzle angle and location so as to achieve quick and easy extinguishing goal, making use of the advantage of CAF, as well as to reduce the fire water and chemicals required.