• Title/Summary/Keyword: medical image segmentation

Search Result 259, Processing Time 0.023 seconds

An Effective Extraction Algorithm of Pulmonary Regions Using Intensity-level Maps in Chest X-ray Images (흉부 X-ray 영상에서의 명암 레벨지도를 이용한 효과적인 폐 영역 추출 알고리즘)

  • Jang, Geun-Ho;Park, Ho-Hyun;Lee, Seok-Lyong;Kim, Deok-Hwan;Lim, Myung-Kwan
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.1062-1075
    • /
    • 2010
  • In the medical image application the difference of intensity is widely used for the image segmentation and feature extraction, and a well known method is the threshold technique that determines a threshold value and generates a binary image based on the threshold. A frequently-used threshold technique is the Otsu algorithm that provides efficient processing and effective selection criterion for choosing the threshold value. However, we cannot get good segmentation results by applying the Otsu algorithm to chest X-ray images. It is because there are various organic structures around lung regions such as ribs and blood vessels, causing unclear distribution of intensity levels. To overcome the ambiguity, we propose in this paper an effective algorithm to extract pulmonary regions that utilizes the Otsu algorithm after removing the background of an X-ray image, constructs intensity-level maps, and uses them for segmenting the X-ray image. To verify the effectiveness of our method, we compared it with the existing 1-dimensional and 2-dimensional Otsu algorithms, and also the results by expert's naked eyes. The experimental result showed that our method achieved the more accurate extraction of pulmonary regions compared to the Otsu methods and showed the similar result as the naked eye's one.

Automatic Multi-threshold Detection Algorithm for the Segmentation of Echocardiographic Images (심초음파 영상의 영역 분류를 위한 다중 문턱치 자동 검출 알고리듬)

  • Choi, Chang-Hou;Koo, Sung-Mo;Kim, Myoung-Nam;Cho, Sung-Mok;Cho, Jin-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.39-42
    • /
    • 1994
  • An automatic multi-threshold algorithm for segmentation of 2D ultrasound images based on average filtering and the characteristics of speckle noise in 2D ultrasound image is proposed. To do this, we investigate the histogram of difference between $7{\times}7$ averaging histogram and $3{\times}3$ averaging histogram. And, we find zero crossing points in the positive portion of the differenced histogram and select middle points of the zero crossing points. We assign these selected points to characteristic points. The thresholds are the center of two characteristic points. Then we segment 2D ultrasound image by using these thresholds and extract edges from applying edge operator to optimal segmented image. Experimental results show that the segmented regions are devided accurately around the homogeneous region.

  • PDF

Comparison of Blooming Artifact Reduction Using Image Segmentation Method in CT Image (CT영상에서 이미지 분할기법을 적용한 Blooming Artifact Reduction 비교 연구)

  • Kim, Jung-Hun;Park, Ji-Eun;Park, Yu-Jin;Ji, In-Hee;Lee, Jong-Min;Cho, Jin-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.295-301
    • /
    • 2017
  • In this study, We subtracted the calcification blooming artifact from MDCT images of coronary atherosclerosis patients and verified their accuracy and usefulness. We performed coronary artery calcification stenosis phantom and a program to subtract calcification blooming artifact by applying 8 different image segmentation method (Otsu, Sobel, Prewitt, Canny, DoG, Region Growing, Gaussian+K-mean clustering, Otsu+DoG). As a result, In the coronary artery calcification stenosis phantom with the lumen region 5 mm the calcification blooming artifact was subtracted in the application of the mixture of Gaussian filtering and K- Clustering algorithm, and the value was close to the actual calcification region. These results may help to accurately diagnose coronary artery calcification stenosis.

Atrous Residual U-Net for Semantic Segmentation in Street Scenes based on Deep Learning (딥러닝 기반 거리 영상의 Semantic Segmentation을 위한 Atrous Residual U-Net)

  • Shin, SeokYong;Lee, SangHun;Han, HyunHo
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.10
    • /
    • pp.45-52
    • /
    • 2021
  • In this paper, we proposed an Atrous Residual U-Net (AR-UNet) to improve the segmentation accuracy of semantic segmentation method based on U-Net. The U-Net is mainly used in fields such as medical image analysis, autonomous vehicles, and remote sensing images. The conventional U-Net lacks extracted features due to the small number of convolution layers in the encoder part. The extracted features are essential for classifying object categories, and if they are insufficient, it causes a problem of lowering the segmentation accuracy. Therefore, to improve this problem, we proposed the AR-UNet using residual learning and ASPP in the encoder. Residual learning improves feature extraction ability and is effective in preventing feature loss and vanishing gradient problems caused by continuous convolutions. In addition, ASPP enables additional feature extraction without reducing the resolution of the feature map. Experiments verified the effectiveness of the AR-UNet with Cityscapes dataset. The experimental results showed that the AR-UNet showed improved segmentation results compared to the conventional U-Net. In this way, AR-UNet can contribute to the advancement of many applications where accuracy is important.

Deep Learning-Based Lumen and Vessel Segmentation of Intravascular Ultrasound Images in Coronary Artery Disease

  • Gyu-Jun Jeong;Gaeun Lee;June-Goo Lee;Soo-Jin Kang
    • Korean Circulation Journal
    • /
    • v.54 no.1
    • /
    • pp.30-39
    • /
    • 2024
  • Background and Objectives: Intravascular ultrasound (IVUS) evaluation of coronary artery morphology is based on the lumen and vessel segmentation. This study aimed to develop an automatic segmentation algorithm and validate the performances for measuring quantitative IVUS parameters. Methods: A total of 1,063 patients were randomly assigned, with a ratio of 4:1 to the training and test sets. The independent data set of 111 IVUS pullbacks was obtained to assess the vessel-level performance. The lumen and external elastic membrane (EEM) boundaries were labeled manually in every IVUS frame with a 0.2-mm interval. The Efficient-UNet was utilized for the automatic segmentation of IVUS images. Results: At the frame-level, Efficient-UNet showed a high dice similarity coefficient (DSC, 0.93±0.05) and Jaccard index (JI, 0.87±0.08) for lumen segmentation, and demonstrated a high DSC (0.97±0.03) and JI (0.94±0.04) for EEM segmentation. At the vessel-level, there were close correlations between model-derived vs. experts-measured IVUS parameters; minimal lumen image area (r=0.92), EEM area (r=0.88), lumen volume (r=0.99) and plaque volume (r=0.95). The agreement between model-derived vs. expert-measured minimal lumen area was similarly excellent compared to the experts' agreement. The model-based lumen and EEM segmentation for a 20-mm lesion segment required 13.2 seconds, whereas manual segmentation with a 0.2-mm interval by an expert took 187.5 minutes on average. Conclusions: The deep learning models can accurately and quickly delineate vascular geometry. The artificial intelligence-based methodology may support clinicians' decision-making by real-time application in the catheterization laboratory.

Modified Pyramid Scene Parsing Network with Deep Learning based Multi Scale Attention (딥러닝 기반의 Multi Scale Attention을 적용한 개선된 Pyramid Scene Parsing Network)

  • Kim, Jun-Hyeok;Lee, Sang-Hun;Han, Hyun-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.45-51
    • /
    • 2021
  • With the development of deep learning, semantic segmentation methods are being studied in various fields. There is a problem that segmenation accuracy drops in fields that require accuracy such as medical image analysis. In this paper, we improved PSPNet, which is a deep learning based segmentation method to minimized the loss of features during semantic segmentation. Conventional deep learning based segmentation methods result in lower resolution and loss of object features during feature extraction and compression. Due to these losses, the edge and the internal information of the object are lost, and there is a problem that the accuracy at the time of object segmentation is lowered. To solve these problems, we improved PSPNet, which is a semantic segmentation model. The multi-scale attention proposed to the conventional PSPNet was added to prevent feature loss of objects. The feature purification process was performed by applying the attention method to the conventional PPM module. By suppressing unnecessary feature information, eadg and texture information was improved. The proposed method trained on the Cityscapes dataset and use the segmentation index MIoU for quantitative evaluation. As a result of the experiment, the segmentation accuracy was improved by about 1.5% compared to the conventional PSPNet.

Realization for Image Searching Engine with Moving Object Identification and Classification

  • Jung, Eun-Suk;Ryu, Kwang-Ryol;Sclabassi, Robert J.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.301-304
    • /
    • 2007
  • A realization for image searching engine with moving objects identification and classification is presented in this paper. The identification algorithm is applied to extract difference image between input image and the reference image, and the classification is used the region segmentation. That is made the database for the searching engine. The experimental result of the realized system enables to search for human and animal at time intervals to use a surveillant system at inside environment.

  • PDF

Extraction and Shape Description of Feature Region on Ocular Fundus Fluorescein Angiogram (형광 안저화상에 관한 특수 영역의 유출 및 모양)

  • Go, Chang-Rim;Ha, Yeong-Ho;Kim, Su-Jung
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.81-86
    • /
    • 1987
  • An image feature extraction method for the low contrast fluoresceln angiogram in dlabetes was studied. To obtain effective image segmentation, an adaptive local difference image is generated and relaxation process are applied to this difference Image. By the use of distance transformed data with segmented image, shape and location of feature regions were obtained. It was shown that the location and shape descriptions of Impaired blood vessel networks and retinal regions are can he utilized for the diagnosis of diabetes and other disease.

  • PDF

User-steered balloon: Application to Thigh Muscle Segmentation of Visible Human (사용자 조정 풍선 : Visible Human의 다리 근육 분할의 적용)

  • Lee, Jeong-Ho;Kim, Dong-Sung;Kang, Heung-Sik
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.3
    • /
    • pp.266-274
    • /
    • 2000
  • Medical image segmentation, which is essential in diagnosis and 3D reconstruction, is performed manually in most applications to produce accurate results. However, manual segmentation requires lots of time to segment, and is difficult even for the same operator to reproduce the same segmentation results for a region. To overcome such limitations, we propose a convenient and accurate semiautomatic segmentation method. The proposed method initially receives several control points of an ROI(Region of Interest Region) from a human operator, and then finds a boundary composed of a minimum cost path connecting the control points, which is the Live-wire method. Next, the boundary is modified to overcome limitations of the Live-wire, such as a zig-zag boundary and erosion of an ROI. Finally, the region is segmented by SRG(Seeded Region Growing), where the modified boundary acts as a blockage to prevent leakage. The proposed User-steered balloon method can overcome not only the limitations of the Live-wire but also the leakage problem of the SRG. Segmentation results of thigh muscles of the Visible Human are presented.

  • PDF

Efficient Deep Neural Network Architecture based on Semantic Segmentation for Paved Road Detection (효율적인 비정형 도로영역 인식을 위한 Semantic segmentation 기반 심층 신경망 구조)

  • Park, Sejin;Han, Jeong Hoon;Moon, Young Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1437-1444
    • /
    • 2020
  • With the development of computer vision systems, many advances have been made in the fields of surveillance, biometrics, medical imaging, and autonomous driving. In the field of autonomous driving, in particular, the object detection technique using deep learning are widely used, and the paved road detection is a particularly crucial problem. Unlike the ROI detection algorithm used in general object detection, the structure of paved road in the image is heterogeneous, so the ROI-based object recognition architecture is not available. In this paper, we propose a deep neural network architecture for atypical paved road detection using Semantic segmentation network. In addition, we introduce the multi-scale semantic segmentation network, which is a network architecture specialized to the paved road detection. We demonstrate that the performance is significantly improved by the proposed method.