• Title/Summary/Keyword: medical body area network

Search Result 64, Processing Time 0.024 seconds

Wearable and Implantable Sensors for Cardiovascular Monitoring: A Review

  • Jazba Asad;Jawwad Ibrahim
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.171-185
    • /
    • 2023
  • The cardiovascular syndrome is the dominant reason for death and the number of deaths due to this syndrome has greatly increased recently. Regular cardiac monitoring is crucial in controlling heart parameters, particularly for initial examination and precautions. The quantity of cardiac patients is rising each day and it would increase the load of work for doctors/nurses in handling the patients' situation. Hence, it needed a solution that might benefit doctors/nurses in monitoring the improvement of the health condition of patients in real-time and likewise assure decreasing medical treatment expenses. Regular heart monitoring via wireless body area networks (WBANs) including implantable and wearable medical devices is contemplated as a life-changing technique for medical assistance. This article focuses on the latest development in wearable and implantable devices for cardiovascular monitoring. First, we go through the wearable devices for the electrocardiogram (ECG) monitoring. Then, we reviewed the implantable devices for Blood Pressure (BP) monitoring. Subsequently, the evaluation of leading wearable and implantable sensors for heart monitoring mentioned over the previous six years, the current article provides uncertain direction concerning the description of diagnostic effectiveness, thus intending on making discussion in the technical communal to permit aimed at the formation of well-designed techniques. The article is concluded by debating several technical issues in wearable and implantable technology and their possible potential solutions for conquering these challenges.

Hybrid Priority Medium Access Control Scheme for Wireless Body Area Networks (무선 인체통신 네트워크를 위한 복합 우선순위 MAC 기법)

  • Lee, In-Hwan;Lee, Gun-Woo;Cho, Sung-Ho;Choo, Sung-Rae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1305-1313
    • /
    • 2010
  • Last few years, wireless personal area network (WPAN) has been widely researched for various healthcare applications. Due to restriction of device hardware (e.g., energy and memory), we need to design a highly-versatile MAC layer protocol for WBAN (Wireless Body Area Network). In addition, when an emergency occurs to a patient, a priority mechanism is necessitated for a urgent message to get through to the final destination. This paper presents a priority mechanism referred to as hybrid priority MAC for WBAN. Through extensive simulation, we show the proposed MAC protocol can minimize the average packet latency for urgent data. Thus, when patients have an emergency situation, our MAC allows adequate assistance time and medical treatment for patients. The simulation based on NS-2 shows that our Hybrid Priority MAC has the good performance and usability.

Integrated Power Optimization with Battery Friendly Algorithm in Wireless Capsule Endoscopy

  • Mehmood, Tariq;Naeem, Nadeem;Parveen, Sajida
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.338-344
    • /
    • 2021
  • The recently continuous enhancement and development in the biomedical side for the betterment of human life. The Wireless Body Area Networks is a significant tool for the current researcher to design and transfer data with greater data rates among the sensors and sensor nodes for biomedical applications. The core area for research in WBANs is power efficiency, battery-driven devices for health and medical, the Charging limitation is a major and serious problem for the WBANs.this research work is proposed to find out the optimal solution for battery-friendly technology. In this research we have addressed the solution to increasing the battery lifetime with variable data transmission rates from medical equipment as Wireless Endoscopy Capsules, this device will analyze a patient's inner body gastrointestinal tract by capturing images and visualization at the workstation. The second major issue is that the Wireless Endoscopy Capsule based systems are currently not used for clinical applications due to their low data rate as well as low resolution and limited battery lifetime, in case of these devices are more enhanced in these cases it will be the best solution for the medical applications. The main objective of this research is to power optimization by reducing the power consumption of the battery in the Wireless Endoscopy Capsule to make it battery-friendly. To overcome the problem we have proposed the algorithm for "Battery Friendly Algorithm" and we have compared the different frame rates of buffer sizes for Transmissions. The proposed Battery Friendly Algorithm is to send the images on average frame rate instead of transmitting the images on maximum or minimum frame rates. The proposed algorithm extends the battery lifetime in comparison with the previous baseline proposed algorithm as well as increased the battery lifetime of the capsule.

A Scalable Wireless Body Area Network for Bio-Telemetry

  • Saeed, Adnan;Faezipour, Miad;Nourani, Mehrdad;Banerjee, Subhash;Lee, Gil;Gupta, Gopal;Tamil, Lakshman
    • Journal of Information Processing Systems
    • /
    • v.5 no.2
    • /
    • pp.77-86
    • /
    • 2009
  • In this paper, we propose a framework for the real-time monitoring of wireless biosensors. This is a scalable platform that requires minimum human interaction during set-up and monitoring. Its main components include a biosensor, a smart gateway to automatically set up the body area network, a mechanism for delivering data to an Internet monitoring server, and automatic data collection, profiling and feature extraction from bio-potentials. Such a system could increase the quality of life and significantly lower healthcare costs for everyone in general, and for the elderly and those with disabilities in particular.

The Medical Bed System for Preventing Pressure Ulcer Using the Two-Stage Control

  • Kim, Jungae;Lee, Youngdae;Seon, Minju;Lim, Jae-Young
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.151-158
    • /
    • 2021
  • The main cause of ulcer is pressure, which starts to develop when the critical body pressure (32mmHg) is exceeded, and when the critical time elapses, ulcer occurs. In this study, the keyboard mechanism of the medical bed with 4 bar links was adopted, and each key can be controlled vertically. A key has one servo drive and one sensor controller which hasseveral body pressure sensors. The sensor controllers and the servo drives are connected to the main controller by two CAN (Car Are Network) in series, respectively. By reading the maximum body pressure value of each keyboard sensor, and by calculating the error value based on the critical body pressure, the fuzzy controller moves each key so that the total error becomes zero. If the fuzzy controller fails, then it prevents ulcer by lifting and lowering the keys of the bed alternatively within a short time. Thus, the controller operates in two-stage. The validity and effectiveness of the proposed approach have been verified through experiments.

Buffer Management Algorithm for Performance Improvement in WBAN (WBAN 환경에서 성능향상을 위한 버퍼 관리 알고리즘)

  • Kim, JiWon;Kim, Kanghee;Lee, ChangHo;Choi, SangBang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.106-114
    • /
    • 2015
  • Wireless Body Area Network(WBAN) is a network standard around a human body which connects various medical sensor and devices It has to satisfy various demands such as data transmission rate, priority, and delay time. In this paper, considering a data priority and transmission delay time, is proposed to improve efficiency of WBAN service depending on congestion status of network. The proposed algorithm operates with adapted data removal probability according to data priority when the hub buffer is congested than before. And in the case of lower congestion within the hub buffer data is served considering data delay time. Through the comparison with other existing scheduling algorithms, it is confirmed that quality of WBAN service is improved due to lower data loss rate of medical data and less delay time in the proposed algorithm.

Group Manchester Code Scheme for Medical In-body WBAN Systems (의료용 in-body WBAN 시스템을 위한 Group Manchester code 변조 방식)

  • Choi, Il-Muk;Won, Kyung-Hoon;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10C
    • /
    • pp.597-604
    • /
    • 2011
  • In this paper, we propose group Manchester code (GM) modulation scheme for medical in-body wireless body area network (WBAN) systems. In IEEE, the WBAN system is assigned as 802.15. Task Group 6 (TG 6), and the related standardization is being progressed, Recently, in this Group, group pulse position modulation (GPPM), which can obtain data rate increase by grouping pulse position modulation (PPM) symbols, is proposed as a new modulation scheme for low-power operation of WBAN system. However, the conventional method suffers from BER performance degradation due to the absence of gray coding and its demodulation characteristics. Therefore, in this paper, we propose a modified GM scheme which groups Manchester code instead of PPM. In the proposed GM scheme, a low-complexity maximum likelihood (ML) demodulation method is employed in order to maximize the BER performances, Also, log likelihood ratio (LLR) decision method is proposed to employ the Turbo code as forward error correction (FEC), Finally, we verified that the proposed method has a good performance and is an appropriate scheme for in-body WBAN system through extensive performance evaluation.

A Study on the Implementation of WBAN-Based Medical Gateway (WBAN 기반의 의료용 게이트웨이 구현에 관한 연구)

  • Park, Yong-Min
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.6
    • /
    • pp.640-647
    • /
    • 2014
  • The WBAN technology means a short distance wireless network which provides each device's interactive communication by connecting devices inside and outside of body located within 3 meters. It is necessary to develop core technology that the WBAN middleware and application service for WBAN sensor network. A device for gathering patient's biometric information was used zigbex of Hanbaek electronics and we designed the message structure which is collected the biometric information. The gateway design and implementation for the WBAN environment. The embedded system was HBE-empos II of Hanbaek electronics and the WBAN network is implemented to BNC and BN that used for hbe-ubi-zigbex. It was confirmed that the proposed sensor gateway could be used for the interconnection of the proposed system with other networks.

The Robustness of Coding and Modulation for Body-Area Networks

  • Biglieri, Ezio;Alrajeh, Nabil
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.264-269
    • /
    • 2014
  • We consider transmission over body area networks. Due to the difficulty in assessing an accurate statistical model valid for multiple scenarios, we advocate a system design technique favoring robustness. Our approach, which is based on results in [12] and generalizes them, examines the variation of a performance metric when the nominal statistical distribution of fading is replaced by the worst distribution within a given Kullback-Leibler divergence from it. The sensitivity of the performance metric to the divergence from the nominal distribution can be used as an indication of the design robustness. This concept is applied by evaluating the error probability of binary uncoded modulation and the outage probability-the first parameter is useful to assess system performance with no error-control coding, while the second reflects the performance when a near-optimal code is used. The usefulness of channel coding can be assessed by comparing its robustness with that of uncoded transmission.

Offset Phase Rotation Shift Keying and Phase Silence Rotation Shift Keying Modulation for Medical In-Body WBAN Systems (의료용 In-Body WBAN 시스템을 위한 Offset Phase Rotation Shift Keying 및 Phase Silence Sotation Shift Keying 변조 방식)

  • Choi, Il-Muk;Won, Kyung-Hoon;Kim, Ki-Yun;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.290-297
    • /
    • 2012
  • In this paper, we proposed new modulation schemes, Offset Phase Rotation Shift Keying (OPRSK) and Phase Shift Rotation Shift Keying (PSRSK), for medical in-body wireless body area network (WBAN) systems. In IEEE, the WBAN system is assigned as 802.15. Task Group (TG) 6, and the related standardization is being progressed. Recently, in this Group, Phase Silence Shift Keying (PSSK), Phase Silence Position Keying (PSPK) and Phase Rotation Shift Keying (PRSK), which can obtain higher power efficiency, are proposed as new modulation schemes for low-power operation of WBAN system. However, they have a disadvantage for non-linear amplifier distortion. Therefore, in this paper, we proposed OPRSK and PSRSK, which are robust to non-linear amplification, by employing a phase offset in constellation and a power distribution in symbol duration, and verified that the proposed methods have good perfomance and stable operation through performance evaluation.