• Title/Summary/Keyword: median grain size

Search Result 14, Processing Time 0.018 seconds

Erosion Control Line (ECL) Establishment Using Coastal Erosion Width Prediction Model by High Wave Height (고파랑 해안 침식폭 예측모델을 이용한 침식한계선(ECL) 설정)

  • Park, Seung-Min;Park, Seol-Hwa;Lee, Jung-Lyul;Kim, Tae-Kon
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.526-534
    • /
    • 2019
  • The average coastline and the erosion control line introduced as the management coastline, and the average shoreline (MSL) was established from the observed coastline. Also, the median grain size and the wave height of 30-years return period were applied. The erosion control line (ECL) was established through the model, HaeSaBeeN. These two lines set the coastline for evaluation. Based on the observed monitoring data along the coastline, the 1-day variation according to the normal distribution was used to estimate the regional variation, and the width of the erosion was calculated by applying the median grain size (D50) and the wave height of 30-years return period through the high-wave coastal erosion width model, i.e., HaeSaBeeN.

Analysis of Shoreline Response due to Wave Energy Incidence Using Equilibrium Beach Profile Concept (평형해빈단면 개념을 이용하여 파랑 에너지 유입에 따른 해안선 변동 해석)

  • Kim, Tae-Kon;Lee, Jung-Lyul
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.116-122
    • /
    • 2018
  • Dean's equilibrium beach profile formula was used to investigate the correlation between the static shoreline position and the incident wave energy. The effect of the longshore sediment transport was neglected, and the results showed the reasonable agreement compared with the field observations of Yates et al.(2009), which were conducted for almost 5 years on southern California beaches, USA. The shoreline response varies with the scale factor of Dean's equilibrium beach profile. This implies that the shoreline response could be simply estimated using the sampled grain size without laborious long-term field work. Therefore, the present study results are expected to be practically used for the layout design of submerged or exposed detached breakwaters although the further work is required for performance verification. In addition, after laborous mathematical reviews, the linear relation between incident energy and shoreline response, which was obtained from Yates's field study, yielded a clear mathematical equation showing how the beach slope is related to the grain size.

Estimation Error Analysis on the Sediment Grain Size Information in the Coastal Zone (연안해역 퇴적물 입도정보 추정오차 분석)

  • Cho, Hong-Yeon;Kim, Chang-Il;Oh, Young-Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.2
    • /
    • pp.124-136
    • /
    • 2006
  • The change pattern of the sediment grain size distribution information (median grain size(D50)) due to some gridding method and sampling density is analyzed with reference to the grid information estimated by the 90 sediment samples which was collected in the coastal water off the Baengnyeongdo Island, in June 2004. The standard deviation of absolute deviation (AD) estimated the selected gridding method shows 8.0 ${\mu}m$ at June, 2004 and 10 ${\mu}m$ November, 2004. The estimated statistical information of absolute deviation in comparison with the grid information of reference and changed sampling density shows that the AD mean error trends increase as the number of samples decrease. The AD mean error is below 10% in the case of the information estimation using 50-sample with reference to the 90-sample information. In this case, the sampling density is suggested as about 9 sediment samples per $km^2$, at coastal zone in Yoggipo port in the condition of the study area is 5.9 $km^2$.

Analysis of size distribution of riverbed gravel through digital image processing (영상 처리에 의한 하상자갈의 입도분포 분석)

  • Yu, Kwonkyu;Cho, Woosung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.7
    • /
    • pp.493-503
    • /
    • 2019
  • This study presents a new method of estimating the size distribution of river bed gravel through image processing. The analysis was done in two steps; first the individual grain images were analyzed and then the grain particle segmentation of river-bed images were processed. In the first part of the analysis, the relationships (long axes, intermediate axes and projective areas) between grain features from images and those measured were compared. For this analysis, 240 gravel particles were collected at three river stations. All particles were measured with vernier calipers and weighed with scales. The measured data showed that river gravel had shape factors of 0.514~0.585. It was found that the weight of gravel had a stronger correlation with the projective areas than the long or intermediate axes. Using these results, we were able to establish an area-weight formula. In the second step, we calculated the projective areas of the river-bed gravels by detecting their edge lines using the ImageJ program. The projective areas of the gravels were converted to the grain-size distribution using the formula previously established. The proposed method was applied to 3 small- and medium- sized rivers in Korea. Comparisons of the analyzed size distributions with those measured showed that the proposed method could estimate the median diameter within a fair error range. However, the estimated distributions showed a slight deviation from the observed value, which is something that needs improvement in the future.

Maturity of the Crater Rim Walls as a function of the Crater Size

  • SIM, Chae Kyung;Kim, Sungsoo S.;Jeong, Minsup
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.45.3-46
    • /
    • 2015
  • Space weathering agents such as micrometeoroids and solar wind particles continuously age the uppermost regolith of the lunar surface by comminuting as well as darkening and reddening. Among several maturity indices, we investigate median grain size () and optical maturity (OMAT) of the crater rim walls. Crater rim wall is the most immature place among the impact crater features because the vertical mixing process by mass-movement can enhance the gardening of regolith and the supply of immature materials in the deeper layer to the surface. More than 140 simple and complex craters were considered. Both and OMAT values of the inner rim wall initially increase as the crater size increases until ~10-20 km, then decrease. This transition crater size happens to correspond to the transition diameter from simple to complex craters. For larger craters, i.e., complex craters, it is clear that the inner rim wall of the craters formed in recent eras tend to remain fresh and become mature along with time. For the simple crater case, smaller craters are more mature, which is opposite to the case of complex craters. This is thought to be because smaller craters become flattened more quickly, thus have smaller vertical mixing in the regolith due to mass-movement. We will also discuss on the maturity indices of the crater rim walls at high latitudes as a function of the position angle to see the latitude dependence of the space weathering process.

  • PDF

Effects of the SiC Particle Size and Content on the Sintering and Mechanical Behaviors of $Al_2O_3$/SiC Particulate Composites

  • Ryu, Jung-Ho;Lee, Jae-Hyung
    • The Korean Journal of Ceramics
    • /
    • v.3 no.3
    • /
    • pp.199-207
    • /
    • 1997
  • $Al_2O_3$/SiC particulate composites were fabircated by pressureless sintering. The dispersed phase was SiC of which the content was varied from 1.0 to 10 vol%. Three SiC powders having different median diameters from 0.28 $\mu\textrm{m}$ to 1.9 $\mu\textrm{m}$ were used. The microstructure became finer and more uniform as the SiC content increased except the 10 vol% specimens, which were sintered at a higher temperature. Under the same sintering condition, densification as well as grain growth was retarded more severly when the SiC content was higher or the SiC particle size was smaller. The highest flexural strength obtained at 5.0 vol% SiC regardless of the SiC particle size seemed to be owing to the finer and more uniform microstructures of the specimens. Annealing of the specimens at $1300^{\circ}C$ improved the strength in general and this annealing effect was good for the specimens containing as low as 1.0 vol% of SiC. Fracture toughness did not change appreciably with the SiC content but, for the composites containing 10 vol% SiC, a significantly higher toughness was obtained with the specimen containing 1.9$\mu\textrm{m}$ SiC particles.

  • PDF

Measurements of Ultrasound Attenuation Coefficient at Various Suspended Sediment Concentrations (부유물 농도 변화에 따른 초음파 신호의 감쇠계수 측정)

  • Lee, Changil;Choi, Jee Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • Coastal water including estuaries has distinctive environmental characteristics where sediments are transported and deposited by flowing river water, providing an environment in which fluid mud layers can be formed. Acoustic method is mostly used to detect or monitor the fluid mud layer. However, since sound propagating in this layer suffers severe attenuation, it is important to estimate the accurate attenuation coefficient for various concentrations of fluid mud layer for the successful use of the acoustic method. In this paper, measurement results of attenuation coefficient for 3.5, 5, and 7.5 MHz ultrasounds were presented. The measurements were made in a small-size water tank in which suspended sediment samples with various sediment concentrations were formed using kaolinite powder. The results were compared to the model predictions obtained by attenuation coefficient model in which the mean grain size (called as Mass-median-diameter, D50) was used as input parameter. There were reasonable agreements between measured attenuation coefficients and model outputs predicted using the particle range of D50 ${\pm}20%$. The comparison results imply that although the suspended sediments consist of various-sized particles, sound attenuation might be greatly influenced by amount of particle with a size which has a larger attenuation than that of any particle in the suspended sediments for the frequency used.

Prediction MOdels for Channel Bed Evolution Due to Short Term Floods (단기간의 홍수에 의한 하상변동의 예측모형)

  • Pyo, Yeong-Pyeong;Sin, Cheol-Sik;Bae, Yeol-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.597-610
    • /
    • 1997
  • One-dimensional numerical models using finite difference methods for unsteady sediment transport on alluvial river channel are developed. The Preissmann implicit scheme and the Lax-Wendroff two-step explicit scheme with the Method of Characteristics for water motion and a forward time centered space explicit scheme for sediment motion are developed to simulate the sediment transport rate and the variation of channel bed level. The program correctness of each model is successfully verified using volume conservation tests. The sensitivity studies show that higher peak stage level, steeper channel slope and longer flooding duration produce more channel bed erosion. and median grain size, $D_{50}=0.4mm$ give maximum volume loss in this study. Finally, the numerical models are found to produce reasonable results from the various sensitivity tests which reveal that the numerical models have properly responded to the changes of each model parameter.

  • PDF

Full-scale investigations into installation damage of nonwoven geotextiles

  • Sardehaei, Ehsan Amjadi;Mehrjardi, Gholamhosein Tavakoli;Dawson, Andrew
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.81-95
    • /
    • 2019
  • Due to the importance of soil reinforcement using geotextiles in geotechnical engineering, study and investigation into long-term performance, design life and survivability of geotextiles, especially due to installation damage are necessary and will affect their economy. During installation, spreading and compaction of backfill materials, geotextiles may encounter severe stresses which can be higher than they will experience in-service. This paper aims to investigate the installation damage of geotextiles, in order to obtain a good approach to the estimation of the material's strength reduction factor. A series of full-scale tests were conducted to simulate the installation process. The study includes four deliberately poorly-graded backfill materials, two kinds of subgrades with different CBR values, three nonwoven needle-punched geotextiles of classes 1, 2 and 3 (according to AASHTO M288-08) and two different relative densities for the backfill materials. Also, to determine how well or how poorly the geotextiles tolerated the imposed construction stresses, grab tensile tests and visual inspections were carried out on geotextile specimens (before and after installation). Visual inspections of the geotextiles revealed sedimentation of fine-grained particles in all specimens and local stretching of geotextiles by larger soil particles which exerted some damage. A regression model is proposed to reliably predict the installation damage reduction factor. The results, obtained by grab tensile tests and via the proposed models, indicated that the strength reduction factor due to installation damage was reduced as the median grain size and relative density of the backfill decreases, stress transferred to the geotextiles' level decreases and as the as-received grab tensile strength of geotextile and the subgrades' CBR value increase.

Laboratory Study on the Settling Properties of Silty Mud (실트질 점토의 심강(沈降) 특성(特性)에 관한 연구)

  • Kim, Cha Kyum;Lee, Jong Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.85-93
    • /
    • 1991
  • To investigate the effect of the initial sediment concentration ($C_o$) and bed shear stress (${\tau}_b$) on the settling properties of silty mud, deposition experiments were conducted in a recirculating flume using silty mud sediment taken from the Youngkwang coast which is located in the eastern Yellow Sea. The relative concentration, $C/C_o$ (C=depth averaged concentration), and the relative equilibrium concentration, $C_{eq}/C_o$ ($C_{eq}$=depth averaged concentration in the equilibrium state), have been found to depend much more strongly on the bed shear stress than initial concentration, and to increase with increasing bed shear stress. The minimum value. ${\tau}_{bmin}$, and maximum value. ${\tau}_{bmax}$, of critical bed shear stress for deposition of the Youngkwang sediment were deduced to be $0.017N/m^2$ and $1.25N/m^2$, respectively, and these values depend strongly on the properties of sediment (grain size and mineralogy). Formulas for the relative concentration and apparent median settling velocity in the range of ${\tau}_b{\geq}{\tau}_{bmin}$ were deduced. The apparent median settling velocity was found to depend much more strongly on the bed shear stress than the initial concentration and to decrease exponentially with increasing bed shear stress.

  • PDF