• 제목/요약/키워드: median collapse

검색결과 18건 처리시간 0.026초

Evaluation of seismic collapse capacity of regular RC frames using nonlinear static procedure

  • Jalilkhani, Maysam;Manafpour, Ali Reza
    • Structural Engineering and Mechanics
    • /
    • 제68권6호
    • /
    • pp.647-660
    • /
    • 2018
  • The Incremental Dynamic Analysis (IDA) procedure is currently known as a robust tool for estimation of seismic collapse capacity. However, the procedure is time-consuming and requires significant computational efforts. Recently some simplified methods have been developed for rapid estimation of seismic collapse capacity using pushover analysis. However, a comparative review and assessment of these methods is necessary to point out their relative advantages and shortcomings, and to pave the way for their practical use. In this paper, four simplified pushover analysis-based methods are selected and applied on four regular RC intermediate moment-resisting frames with 3, 6, 9 and 12 stories. The accuracy and performance of the different simplified methods in estimating the median seismic collapse capacity are evaluated through comparisons with the results obtained from IDAs. The results show that reliable estimations of the summarized 50% fractile IDA curve are produced using SPO2IDA and MPA-based IDA methods; however, the accuracy of the results for 16% and 84% fractiles is relatively low. The method proposed by Shafei et al. appears to be the most simple and straightforward method which gives rise to good estimates of the median sidesway collapse capacity with minimum computational efforts.

Dynamic Instability of Strength-Limited Bilinear SDF Systems (강도한계 이선형 단자유도 시스템의 동적 불안정)

  • Han, Sang-Whan;Kim, Jong-Bo;Bae, Mun-Su;Moon, Ki-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제12권5호
    • /
    • pp.23-29
    • /
    • 2008
  • This study investigates the dynamic instability of strength-limited bilinear single degree of freedom (SDF) systems under seismic excitation. The strength-limited bilinear hysteretic model best replicates the hysteretic behavior of the steel moment resisting frames. To estimate the dynamic instability of SDF systems, the collapse strength ratio is used, which is the yield-strength reduction factor when collapse occurs. Statistical studies are carried out to estimate median collapse strength ratios and those dispersions of strength-limited bilinear SDF systems with given natural periods, hardening stiffness ratios, post-capping stiffness ratios, ductility and damping ratios ranging from 2 to 20% subjected to 240 earthquake ground motions recorded on stiff soil sites. Equations to calculate median and standard deviation of collapse strength ratios in strength-limited bilinear SDF systems are obtained through nonlinear regression analysis. By using the proposed equations, this study estimated the probabilistic distribution of collapse strength ratios, and compared this with the exact values from which the accuracy of the proposed equations was verified.

Surgical outcomes in dogs with tracheal collapse treated with a novel cross-and-hook braided endoluminal stent

  • Uemura, Akiko;Ozai, Yusuke;Hamabe, Lina;Yoshida, Tomohiko;Tanaka, Ryou
    • Journal of Veterinary Science
    • /
    • 제23권3호
    • /
    • pp.46.1-46.8
    • /
    • 2022
  • Background: Stenting is an effective treatment option for tracheal collapse in dogs. Cross-braided tracheal stents are currently the norm in veterinary medicine, but cross-and-hook braided stents have recently been adopted in human medicine. We examined whether stents manufactured using this novel braiding technique provided additional advantages for the treatment of tracheal collapse in dogs. Objectives: To evaluate the outcomes of cross-and-hook braided stent implantation in the treatment of tracheal collapse in dogs. Methods: The medical records of 22 client-owned dogs that underwent luminal placement of cross-and-hook braided Fauna Stents for the treatment of tracheal collapse between January 2018 and July 2021 were examined and data on canine signalment, clinical signs, diagnostic test results, surgical outcomes, and postoperative complications were retrieved and analyzed statistically. Results: Twenty-six stents were surgically implanted, with 20 dogs (90.9%) receiving one stent and the remaining two (9.1%) receiving two or more stents. All dogs survived the procedure. The median survival time at a median follow-up of 990 days was 879 days. At the final follow-up examination, loss or mild improvement of cough was observed in all dogs. Conclusions: Compared with conventional lumen stents, the cross-and-hook braided Fauna Stent offered a higher survival rate and improved clinical symptoms in all patients. The results of this study suggest that the Fauna Stent may be a promising treatment option for dogs with tracheal collapse.

Erosion Criteria for the Progressive Collapse Analysis of Reinforcement Concrete Structure due to Blast Load (철근콘크리트 건물의 폭발하중에 의한 연쇄붕괴 해석을 위한 침식 기준)

  • Kim, Han-Soo;Ahn, Hyo-Seong
    • Journal of the Korea Concrete Institute
    • /
    • 제26권3호
    • /
    • pp.335-342
    • /
    • 2014
  • In this paper, reference erosion criteria value suitable for progressive collapse analysis of RC structure due to blast load is proposed. Erosion is fundamentally a numerical technique to overcome the problems such as large numerical errors or abrupt termination of analysis and previous study has been suggested value for blast analysis. But concrete has different stress-strain curve according to strain rate. Consequently, the erosion criteria for the realistic progressive collapse simulation were suggested by comparing experiment results and numerical analysis results. Finally, the real progressive collapse of Oklahoma Federal Building was analyzed by using the median value of two values. And as a result, the analysis result is the actual collapse of the well described.

An improvement on fuzzy seismic fragility analysis using gene expression programming

  • Ebrahimi, Elaheh;Abdollahzadeh, Gholamreza;Jahani, Ehsan
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.577-591
    • /
    • 2022
  • This paper develops a comparatively time-efficient methodology for performing seismic fragility analysis of the reinforced concrete (RC) buildings in the presence of uncertainty sources. It aims to appraise the effectiveness of any variation in the material's mechanical properties as epistemic uncertainty, and the record-to-record variation as aleatory uncertainty in structural response. In this respect, the fuzzy set theory, a well-known 𝛼-cut approach, and the Genetic Algorithm (GA) assess the median of collapse fragility curves as a fuzzy response. GA is requisite for searching the maxima and minima of the objective function (median fragility herein) in each membership degree, 𝛼. As this is a complicated and time-consuming process, the authors propose utilizing the Gene Expression Programming-based (GEP-based) equation for reducing the computational analysis time of the case study building significantly. The results indicate that the proposed structural analysis algorithm on the derived GEP model is able to compute the fuzzy median fragility about 33.3% faster, with errors less than 1%.

Uncertainty reduction of seismic fragility of intake tower using Bayesian Inference and Markov Chain Monte Carlo simulation

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Structural Engineering and Mechanics
    • /
    • 제63권1호
    • /
    • pp.47-53
    • /
    • 2017
  • The fundamental goal of this study is to minimize the uncertainty of the median fragility curve and to assess the structural vulnerability under earthquake excitation. Bayesian Inference with Markov Chain Monte Carlo (MCMC) simulation has been presented for efficient collapse response assessment of the independent intake water tower. The intake tower is significantly used as a diversion type of the hydropower station for maintaining power plant, reservoir and spillway tunnel. Therefore, the seismic fragility assessment of the intake tower is a pivotal component for estimating total system risk of the reservoir. In this investigation, an asymmetrical independent slender reinforced concrete structure is considered. The Bayesian Inference method provides the flexibility to integrate the prior information of collapse response data with the numerical analysis results. The preliminary information of risk data can be obtained from various sources like experiments, existing studies, and simplified linear dynamic analysis or nonlinear static analysis. The conventional lognormal model is used for plotting the fragility curve using the data from time history simulation and nonlinear static pushover analysis respectively. The Bayesian Inference approach is applied for integrating the data from both analyses with the help of MCMC simulation. The method achieves meaningful improvement of uncertainty associated with the fragility curve, and provides significant statistical and computational efficiency.

Influence of strong ground motion duration on reinforced concrete walls

  • Flores, Camilo;Bazaez, Ramiro;Lopez, Alvaro
    • Earthquakes and Structures
    • /
    • 제21권5호
    • /
    • pp.477-487
    • /
    • 2021
  • This study focuses on the influence of strong ground motion duration on the response and collapse probability of reinforced concrete walls with a predominant response in flexure. Walls with different height and mass were used to account for a broad spectrum of configurations and fundamental periods. The walls were designed following the specifications of the Chilean design code. Non-linear models of the reinforced concrete walls using a distributed plasticity approach were performed in OpenSees and calibrated with experimental data. Special attention was put on modeling strength and stiffness degradation. The effect of duration was isolated using spectrally equivalent ground motions of long and short duration. In order to assess the behavior of the RC shear walls, incremental dynamic analyses (IDA) were performed, and fragility curves were obtained using cumulative and non-cumulative engineering demand parameters. The spectral acceleration at the fundamental period of the wall was used as the intensity measure (IM) for the IDAs. The results show that the long duration ground motion set decreases the average collapse capacity in walls of medium and long periods compared to the results using the short duration set. Also, it was found that a lower median intensity is required to achieve moderate damage states in the same medium and long period wall models. Finally, strength and stiffness degradation are important modelling parameters and if they are not included, the damage in reinforced concrete walls may be greatly underestimated.

Evaluation of Seismic Performance Factors of Diagrid Structural System (다이아그리드 구조 시스템의 내진성능계수 평가)

  • Kim, Kyoung-Hwan;Ju, Young-Kyu;Kim, Sang-Dae
    • Journal of Korean Society of Steel Construction
    • /
    • 제22권3호
    • /
    • pp.229-239
    • /
    • 2010
  • As a new structural system, the diagrid system resists both gravity and lateral loads with diagonal columns. In current seismic design provisions, however, the response modification factor for a new structural system is not provided yet. ATC-63 provides a new methodology for defining various seismic performance factors, including the response modification factor. ATC-63 includes the collapse margin ratio in modifying the response modification factor, which can vary with many structural systems. In this paper, a non-linear static analysis and a dynamic analysis were conducted for four different diagrid models with 4-to 36-story heights. From these analyses, the response modification factor of the diagrid system was evaluated.

Investigation of seismic performance of a premodern RC building typology after November 26, 2019 earthquake

  • Marsed Leti;Huseyin Bilgin
    • Structural Engineering and Mechanics
    • /
    • 제89권5호
    • /
    • pp.491-505
    • /
    • 2024
  • This study evaluates the seismic performance of a premodern six story reinforced concrete building typology designed during the communism period of Albania and build throughout the country. During the November 26, 2019 Earthquake in Albania, the most affected reinforced concrete buildings were among the old templates, lacking shear walls and inadequate reinforcement details which suffer from concrete aging. The mathematical model of the selected building is done in the environments of ZeusNL software, developed especially for earthquake engineering applications. The capacity curve of the structure is gained using the conventional static nonlinear analysis. On the other hand, the demand estimation is utilized using one of the recent methods known as Incremental Dynamic Analysis with a set of 18 ground motion records. The limit states in both curves are defined based on the modern guidelines. For the pushover, immediate occupancy (IO), life safety (LS) and collapse prevention (CP) are plotted in the same graph with capacity curve. Furthermore, on each IDA derived, the IO, CP and global instability (GI) are determined. Moreover, the IDA fractiles are generated as suggested by the literature, 16%, 50% (median) and 84%. In addition, the comparative assessment of the IDA median with capacity curve shows good correlation points. Lastly, this study shows the approach of determination of LS in IDA fractiles for further vulnerability assessment based on the local seismic hazard map with 95 and 475 return period.

Bayesian Semi-Parametric Regression for Quantile Residual Lifetime

  • Park, Taeyoung;Bae, Wonho
    • Communications for Statistical Applications and Methods
    • /
    • 제21권4호
    • /
    • pp.285-296
    • /
    • 2014
  • The quantile residual life function has been effectively used to interpret results from the analysis of the proportional hazards model for censored survival data; however, the quantile residual life function is not always estimable with currently available semi-parametric regression methods in the presence of heavy censoring. A parametric regression approach may circumvent the difficulty of heavy censoring, but parametric assumptions on a baseline hazard function can cause a potential bias. This article proposes a Bayesian semi-parametric regression approach for inference on an unknown baseline hazard function while adjusting for available covariates. We consider a model-based approach but the proposed method does not suffer from strong parametric assumptions, enjoying a closed-form specification of the parametric regression approach without sacrificing the flexibility of the semi-parametric regression approach. The proposed method is applied to simulated data and heavily censored survival data to estimate various quantile residual lifetimes and adjust for important prognostic factors.