• Title/Summary/Keyword: media object service

Search Result 74, Processing Time 0.021 seconds

Twitter Issue Tracking System by Topic Modeling Techniques (토픽 모델링을 이용한 트위터 이슈 트래킹 시스템)

  • Bae, Jung-Hwan;Han, Nam-Gi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2014
  • People are nowadays creating a tremendous amount of data on Social Network Service (SNS). In particular, the incorporation of SNS into mobile devices has resulted in massive amounts of data generation, thereby greatly influencing society. This is an unmatched phenomenon in history, and now we live in the Age of Big Data. SNS Data is defined as a condition of Big Data where the amount of data (volume), data input and output speeds (velocity), and the variety of data types (variety) are satisfied. If someone intends to discover the trend of an issue in SNS Big Data, this information can be used as a new important source for the creation of new values because this information covers the whole of society. In this study, a Twitter Issue Tracking System (TITS) is designed and established to meet the needs of analyzing SNS Big Data. TITS extracts issues from Twitter texts and visualizes them on the web. The proposed system provides the following four functions: (1) Provide the topic keyword set that corresponds to daily ranking; (2) Visualize the daily time series graph of a topic for the duration of a month; (3) Provide the importance of a topic through a treemap based on the score system and frequency; (4) Visualize the daily time-series graph of keywords by searching the keyword; The present study analyzes the Big Data generated by SNS in real time. SNS Big Data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. In addition, such analysis requires the latest big data technology to process rapidly a large amount of real-time data, such as the Hadoop distributed system or NoSQL, which is an alternative to relational database. We built TITS based on Hadoop to optimize the processing of big data because Hadoop is designed to scale up from single node computing to thousands of machines. Furthermore, we use MongoDB, which is classified as a NoSQL database. In addition, MongoDB is an open source platform, document-oriented database that provides high performance, high availability, and automatic scaling. Unlike existing relational database, there are no schema or tables with MongoDB, and its most important goal is that of data accessibility and data processing performance. In the Age of Big Data, the visualization of Big Data is more attractive to the Big Data community because it helps analysts to examine such data easily and clearly. Therefore, TITS uses the d3.js library as a visualization tool. This library is designed for the purpose of creating Data Driven Documents that bind document object model (DOM) and any data; the interaction between data is easy and useful for managing real-time data stream with smooth animation. In addition, TITS uses a bootstrap made of pre-configured plug-in style sheets and JavaScript libraries to build a web system. The TITS Graphical User Interface (GUI) is designed using these libraries, and it is capable of detecting issues on Twitter in an easy and intuitive manner. The proposed work demonstrates the superiority of our issue detection techniques by matching detected issues with corresponding online news articles. The contributions of the present study are threefold. First, we suggest an alternative approach to real-time big data analysis, which has become an extremely important issue. Second, we apply a topic modeling technique that is used in various research areas, including Library and Information Science (LIS). Based on this, we can confirm the utility of storytelling and time series analysis. Third, we develop a web-based system, and make the system available for the real-time discovery of topics. The present study conducted experiments with nearly 150 million tweets in Korea during March 2013.

Big Five Personality in Discriminating the Groups by the Level of Social Sims (심리학적 도구 '5요인 성격 특성'에 의한 소셜 게임 연구: <심즈 소셜> 게임의 분석사례를 중심으로)

  • Lee, Dong-Yeop
    • Cartoon and Animation Studies
    • /
    • s.29
    • /
    • pp.129-149
    • /
    • 2012
  • The purpose of this study was to investigate the clustering and Big Five Personality domains in discriminating groups by level of school-related adjustment, as experienced by Social Sims game users. Social Games are based on web that has simple rules to play in fictional time and space background. This paper is to analyze the relationships between social networks and user behaviors through the social games . In general, characteristics of social games are simple, fun and easy to play, popular to the public, and based on personal connections in reality. These features of social games make themselves different from video games with one player or MMORPG with many unspecific players. Especially Social Game show a noticeable characteristic related to social learning. The object of this research is to provide a possibility that game that its social perspective can be strengthened in social game environment and analyze whether it actually influences on problem solving of real life problems, therefore suggesting its direction of alternative play means and positive simulation game. Data was collected by administering 4 questionnaires (the short version of BFI, Satisfaction with life, Career Decision-.Making Self-.Efficacy, Depression) to the participants who were 20 people in Seoul and Daejeon. For the purposes of the data analysis, both Stepwise Discriminant analysis and Cluster analysis was employed. Neuroticism, Openness, Conscientiousness within the Big Five Personality domains were seen to be significant variables when it came to discriminating the groups. These findings indicated that the short version of the BFI may be useful in understanding for game user behaviors When it comes to cultural research, digital game takes up a significant role. We can see that from the fact that game, which has only been considered as a leisure activity or commercial means, is being actively research for its methodological, social role and function. Among digital game's several meanings, one of the most noticeable ones is the research on its critical, social participating function. According to Jame Paul gee, the most important merit of game is 'projected identity'. This means that experiences from various perspectives is possible.[1] In his recent autobiography , he described gamer as an active problem solver. In addition, Gonzalo Francesca also suggested an alternative game developing method through 'game that conveys critical messages by strengthening critical reasons'. [2] They all provided evidences showing game can be a strong academic tool. Not only does a genre called social game exist in the field of media and Social Network Game, but there are also some efforts to positively evaluate its value Through these kinds of researches, we can study how game can give positive influence along with the change in its general perception, which would eventually lead to spreading healthy game culture and enabling fresh life experience. This would better bring out the educative side of the game and become a social communicative tool. The object of this game is to provide a possibility that the social aspect can be strengthened within the game environment and analyze whether it actually influences the problem solving of real life problems. Therefore suggesting it's direction of alternative play means positive game simulation.

Documentation of Intangible Cultural Heritage Using Motion Capture Technology Focusing on the documentation of Seungmu, Salpuri and Taepyeongmu (부록 3. 모션캡쳐를 이용한 무형문화재의 기록작성 - 국가지정 중요무형문화재 승무·살풀이·태평무를 중심으로 -)

  • Park, Weonmo;Go, Jungil;Kim, Yongsuk
    • Korean Journal of Heritage: History & Science
    • /
    • v.39
    • /
    • pp.351-378
    • /
    • 2006
  • With the development of media, the methods for the documentation of intangible cultural heritage have been also developed and diversified. As well as the previous analogue ways of documentation, the have been recently applying new multi-media technologies focusing on digital pictures, sound sources, movies, etc. Among the new technologies, the documentation of intangible cultural heritage using the method of 'Motion Capture' has proved itself prominent especially in the fields that require three-dimensional documentation such as dances and performances. Motion Capture refers to the documentation technology which records the signals of the time varing positions derived from the sensors equipped on the surface of an object. It converts the signals from the sensors into digital data which can be plotted as points on the virtual coordinates of the computer and records the movement of the points during a certain period of time, as the object moves. It produces scientific data for the preservation of intangible cultural heritage, by displaying digital data which represents the virtual motion of a holder of an intangible cultural heritage. National Research Institute of Cultural Properties (NRICP) has been working on for the development of new documentation method for the Important Intangible Cultural Heritage designated by Korean government. This is to be done using 'motion capture' equipments which are also widely used for the computer graphics in movie or game industries. This project is designed to apply the motion capture technology for 3 years- from 2005 to 2007 - for 11 performances from 7 traditional dances of which body gestures have considerable values among the Important Intangible Cultural Heritage performances. This is to be supported by lottery funds. In 2005, the first year of the project, accumulated were data of single dances, such as Seungmu (monk's dance), Salpuri(a solo dance for spiritual cleansing dance), Taepyeongmu (dance of peace), which are relatively easy in terms of performing skills. In 2006, group dances, such as Jinju Geommu (Jinju sword dance), Seungjeonmu (dance for victory), Cheoyongmu (dance of Lord Cheoyong), etc., will be documented. In the last year of the project, 2007, education programme for comparative studies, analysis and transmission of intangible cultural heritage and three-dimensional contents for public service will be devised, based on the accumulated data, as well as the documentation of Hakyeonhwadae Habseolmu (crane dance combined with the lotus blossom dance). By describing the processes and results of motion capture documentation of Salpuri dance (Lee Mae-bang), Taepyeongmu (Kang seon-young) and Seungmu (Lee Mae-bang, Lee Ae-ju and Jung Jae-man) conducted in 2005, this report introduces a new approach for the documentation of intangible cultural heritage. During the first year of the project, two questions have been raised. First, how can we capture motions of a holder (dancer) without cutoffs during quite a long performance? After many times of tests, the motion capture system proved itself stable with continuous results. Second, how can we reproduce the accurate motion without the re-targeting process? The project re-created the most accurate motion of the dancer's gestures, applying the new technology to drew out the shape of the dancers's body digital data before the motion capture process for the first time in Korea. The accurate three-dimensional body models for four holders obtained by the body scanning enhanced the accuracy of the motion capture of the dance.

A Study on Detection Methodology for Influential Areas in Social Network using Spatial Statistical Analysis Methods (공간통계분석기법을 이용한 소셜 네트워크 유력지역 탐색기법 연구)

  • Lee, Young Min;Park, Woo Jin;Yu, Ki Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.21-30
    • /
    • 2014
  • Lately, new influentials have secured a large number of volunteers on social networks due to vitalization of various social media. There has been considerable research on these influential people in social networks but the research has limitations on location information of Location Based Social Network Service(LBSNS). Therefore, the purpose of this study is to propose a spatial detection methodology and application plan for influentials who make comments about diverse social and cultural issues in LBSNS using spatial statistical analysis methods. Twitter was used to collect analysis object data and 168,040 Twitter messages were collected in Seoul over a month-long period. In addition, 'politics,' 'economy,' and 'IT' were set as categories and hot issue keywords as given categories. Therefore, it was possible to come up with an exposure index for searching influentials in respect to hot issue keywords, and exposure index by administrative units of Seoul was calculated through a spatial joint operation. Moreover, an influential index that considers the spatial dependence of the exposure index was drawn to extract information on the influential areas at the top 5% of the influential index and analyze the spatial distribution characteristics and spatial correlation. The experimental results demonstrated that spatial correlation coefficient was relatively high at more than 0.3 in same categories, and correlation coefficient between politics category and economy category was also more than 0.3. On the other hand, correlation coefficient between politics category and IT category was very low at 0.18, and between economy category and IT category was also very weak at 0.15. This study has a significance for materialization of influentials from spatial information perspective, and can be usefully utilized in the field of gCRM in the future.