• Title/Summary/Keyword: mechanized

Search Result 238, Processing Time 0.026 seconds

Effects of Planting Density on Growth and Yield in Wide-Row Drill Seeding of Upright Type Adzuki Beans (Vigna angularis (Willd.) Ohwi Ohashi) (직립형 팥의 넓은이랑 줄뿌림 재배시 재식밀도에 따른 생육 및 수량특성)

  • Jung, Ki-Youl;Choi, Young-Dae;Chun, Hyen-Chung;Lee, Sang-Hun;Jeon, Seung-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.4
    • /
    • pp.378-383
    • /
    • 2018
  • The goal of this study was to examine the growth and yield according to planting density in wide-row drill seeding cultivation suitable for mechanized harvesting. We evaluated effects depending on planting densities [row spacing (30, 40, 50, and 60 cm) and plant spacing (10, 15, and 20 cm)] and cultivars ('Hongeon' and 'Arari') on growth and yield of Adzuki Beans (Vigna angularis (Willd.) Ohwi Ohashi). When row spacing decreased, the stem length increased in 'Arari' but decreased in 'Hongeon.' The stem diameter and number of branches in both the cultivars decreased with a decrease in row spacing. The pod height increased with lower planting densities. The greatest height values recorded in 'Hongeon' and 'Arari' were 5.0 cm and 8.8 cm in $30{\times}10cm$ and $50{\times}10cm$ treatments, respectively. The number of pods and number of seeds in both cultivars tended to increase with a decrease in planting density. On the other hand, in 100-seed weight, there was a difference in planting density in 'Hongeon', but no difference in 'Arari'. The highest yield was at the planting density of $40{\times}15cm$ in both 'Hongeon' and 'Arari', $285kg{\cdot}10a^{-1}$ and $374kg{\cdot}10a^{-1}$.

Effects of Planting Density on Growth and Yield in Wide-Row Drill Seeding of Proso millet (Panicum miliaceum L.) (넓은이랑 줄뿌림 파종 시 재식밀도에 따른 기장의 생육 및 수량)

  • Jung, Ki-Youl;Choi, Young-Dae;Chun, Hyen-Chung;Lee, Sang-Hun;Jeon, Seung-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • The goal of this study was to investigate how the characteristics of growth and yield are affected by various planting densities in wide-row drill seeding cultivation suitable for mechanized harvesting. Two cultivars ('Hwanggeum' and 'Leebackchal') of proso millet (Panicum miliaceum L.) were planted at varying planting densities [row spacing (20, 30, and 50 cm) and plant spacing (3, 5, 10, and 15 cm)]. The culm length was highest at the planting density of $50{\times}3cm$ and $50{\times}5cm$ for 'Hwanggeum' and $20{\times}3cm$ for 'Leebackchal'. The culm diameter became thinner as the planting density increased. The number of tillering and panicle length showed the same tendency to increase in quantity or length as planting density decreased and was highest at $50{\times}15cm$ when the planting density was lowest. The number of seeds per individual increased as planting density decreased. The thousand grain weight showed no significant differences among treatment plots. The greatest yield of 'Hwanggeum' was obtained at a planting density of $50{\times}3cm$ ($314.9kg{\cdot}10a^{-1}$) and that of 'Leebackchal' was obtained at $50{\times}3cm$ and $50{\times}5cm$ ($358-356kg{\cdot}10a^{-1}$).

Development of penetration rate prediction model using shield TBM excavation data (쉴드 TBM 현장 굴진데이터를 이용한 굴착속도 예측모델 개발)

  • La, You-Sung;Kim, Myung-In;Kim, Bumjoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.519-534
    • /
    • 2019
  • Mechanized tunneling methods, including shield TBM, have been increasingly used for tunnel construction because of their relatively low vibration and noise levels as well as low risk of rock-falling accidents. In the excavation using the shield TBM, it is important to design penetration rate appropriately. In present study, both subsurface investigation data and shield TBM excavation data, produced for and during ${\bigcirc}{\bigcirc}{\sim}{\bigcirc}{\bigcirc}$ high-speed railway construction, were analyzed and used to compare with shield TBM penetration rates calculated using existing penetrating rate prediction models proposed by several foreign researchers. The correlation between thrust force per disk cutter and uniaxial compressive strength was also examined and, based on the correlation analysis, a simple prediction model for penetration rate was derived. The prediction results using the existing prediction models showed approximately error rates of 50~500%, whereas the results from the simple model proposed from this study showed an error rate of 15% in average. It may be said, therefore, that the proposed model has higher applicability for shield TBM construction in similar ground conditions.

Pre-grouting for CHI of EPB shield TBM in difficult grounds: a case study of Daegok-Sosa railway tunnel (복합지반 EPB TBM 커터교체를 위한 그라우팅 수행 사례)

  • Kang, Sung-Wook;Chang, Jaehoon;Lee, Jae-Won;Kim, Dae-Young;Shin, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.5
    • /
    • pp.281-302
    • /
    • 2021
  • Railway projects have been consistently increasing in Korea. In relation to this trend, the mechanized tunneling using Tunnel Boring Machine (TBM) is preferably applied for mining urban areas and passing under rivers. The TBM tunneling under difficult grounds like mixed faces with high water pressure could require ground improvements for stable TBM advance or safe cutter head intervention (CHI). In this study, pre-grouting works for CHI in Daegok-Sosa railway project are presented in terms of the grouting zone design, the executions and the results, the lessons learned from the experience. It should be mentioned that the grouting from inside TBM was carried out several times and turned out to be inefficient in the project. Therefore, grouting experiences from the surface are highlighted in this study. Jet grouting was implemented on CHI points on land, while permeation grouting off shore in the Han River, which mostly allow to access the cutter head of TBM in free air with stable faces. The results of CHI works have been analyzed and the lesson learned are suggested.

The need for mechanization in todays canal building program in korea and overseas (수로의 기계화 시공의 필요성)

  • Ha, Gordon P.wkins
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.2
    • /
    • pp.21-27
    • /
    • 1979
  • Canal construction is not the only area in which mechanization has advanced with great strides. All phases of the construction industry, including earthmoving, land clearing and levelling, road construction, and drainage and water control projects, have benefited from today's technological advancements. Lasers, an excellant example of advanced technology, have been refined for use as guidance systems for construction machinery, increasing accuracy and the speed of operation. The use of explosives by contractors is becoming more commonplace. One of the most valuable modern tools available today is the two-way radio. On today's sophisticated projects a single machine being down can frequently stop the progress of the entire project, delaying hundreds of men and machines from completing their assigned work for the day. The use of two-way radios in all the pickups and cars being used on a project facilitates communication so that emergency repairs can be effected immediately, and costly down time on any project can be reduced to a minimum. Not every construction project is suitable to mechanization. However, on the majority of projects mechanization has a great deal to offer the Korean contractor, and all contractors, in savings of time and money. Each and every project being considered by a contractor, should be closely examined for the most effective and efficient machinery application available. The International Commission on Irrigation and Drainage (ICID) has formed a committee on construction techniques being used in canal construction today. Two publications are now available describing the advances made in recent years. Standards for construction have been established for mechanized systems and this information is being distributed worldwide.

  • PDF

The Characteristics of the Rural Landscape of Daesan Plain Around the Japanese Colonial Era (일제강점기 전후 대산평야 농촌경관의 형성과 변화)

  • Jeong, Jae-Hyeon;Lee, Yoo-Jick
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.1
    • /
    • pp.15-31
    • /
    • 2024
  • The study primarily aims to examine the characteristics of the transition from natural landscape to modern agricultural landscape on the Daesan plain in Dong-myeon, Changwon-si, in the lower reaches of the Nakdong River. The periods covered in the transition include the late Joseon Dynasty, the early Japanese colonial period, and the late Japanese colonial period. The study concluded the following: It was found that the Daesan Plain used to function as a hydrophilic landscape before it formed into a rural landscape. This is characterized by the various water resources in the Plain, primarily by the Nakdong River, with its back marsh tributaries, the Junam Reservoir and Jucheon. To achieve its recent form, the Daesan Plain was subjected to human trial and error. Through installation of irrigation facilities such as embankments and sluices, the irregularly-shaped wetlands were transformed into large-scale farmlands while the same irrigation facilities underwent constant renovation to permanently stabilize the rural landscape. These processes of transformation were similarly a product of typical colonial expropriation. During the Japanese colonial period, Japanese capitalists initiated the construction of private farms which led to the national land development policy by the Governor-General of Korea. These landscape changes are indicative of resource capitalism depicted by the expansion of agricultural production value by the application of resource capital to undeveloped natural space for economic viability. As a result, the hierarchical structure was magnified resulting to the exacerbation of community and economic structural imbalances which presents an alternative yet related perspective to the evolution of landscapes during the Japanese colonial period. In addition, considering Daesan Plain's vulnerability to changing weather conditions, natural processes have also been a factor to its landscape transformation. Such occurrences endanger the sustainability of the area as when floods inundate cultivated lands and render them unstable, endangering residents, as well as the harvests. In conclusion, the Daesan Plain originally took the form of a hydrophilic landscape and started significantly evolving into a rural landscape since the Japanese colonial period. Human-induced land development and geophysical processes significantly impacted this transformation which also exemplifies the several ways of how undeveloped natural landscapes turn into mechanized and capitalized rural landscapes by colonial resource capitalism and development policies.

Differential Effects of Acute and Chronic Exercise on Autophagy-related Gene Expression in Drosophila melanogaster (일회성 및 만성적 유산소운동이 초파리의 자가포식 관련 유전자 발현에 미치는 영향)

  • Kim, Hee Yeon;Kim, Hye Jin;Hwang, Ji Sun;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.24 no.11
    • /
    • pp.1180-1186
    • /
    • 2014
  • Autophagy, the lysosomal degradation pathway, is an intracellular recycling system that is necessary for the metabolic benefits of exercise and for producing lasting beneficial effects of exercise in various diseases. However, the most recent studies have only examined the effect of a single bout of exercise or resistance exercise on autophagic responses. To determine the differential effects of acute and chronic exercise on the expression of autophagy-related genes in D. melanogaster, white-eyed mutant D. melanogaster were assigned randomly to four groups: control, acute exercise, 2 hr chronic exercise, and 3 hr chronic exercise. The flies were exercised using a mechanized platform known as the Power Tower. Our results revealed that a single bout of exercise resulted in increased mRNA levels of the Atg8a gene (~20%, p<0.05). However, Atg1 and Atg6 mRNA expression were not induced by acute exercise. Transcript levels of Atg6 (~29%, p<0.05) related to the nucleation of autophagosomes were significantly induced by 2 hr of chronic exercise. However, this chronic exercise was not enough to increase Atg1 and Atg8a mRNA expression. On the other hand, 3 hr of exercise for 7 days significantly increased Atg1, Atg6, and Atg8a gene expression-about 57%, 37%, and 71%, respectively (p<0.05). These results suggest that a single bout of exercise is not enough to induce full activation of selected autophagy-related genes in D. melanogaster. Our results demonstrated that chronic regular exercise induced autophagy-related gene expression, suggesting that chronic regular exercise training might be required to activate autophagic responses important for producing beneficial effects of exercise in various diseases.

Studies on the Nutritional Value of Elderberry (Sam bucus canadensis) Fruits (Elderberry(Sam bucus canadensis) 과실(果實)의 영양가(營養價)에 대(對)하여)

  • Park, Kyo Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.67 no.1
    • /
    • pp.42-49
    • /
    • 1984
  • The elderberry was known to the ancients for its medicinal properties, and in Europe the inner back was formerly administered as a cathartic. The flowers contain a voletile oil, and serve for the distilation of elder-lower water, used in confectionery, perfumes and lotions. The leaves are employed to impart a green colour to fat and oil, and the leaves and bark emit a sickly odour, believed to be repugnant to insect. With its unique flavor and natural food colour, commercial processing companies used the fruit mainly in the making for jam, jelly, pies, juice, and wines. Its vitamin-C content is reported by Andross (1941) as 25-30mg/100g. Harvesting and processing have been mechanized to some extent. However, the cotains with nutritional value has not been reported yet. In the present study the various contains with nutritional value in the fresh elderberry juice is reported by the quantitative analysis. In this study results obtained can be summarized as follows. 1) The fresh elderberry juice contained following mineral elements; calcium 0.012%, magnesium 0.023%, potassium 0.10%, sodium 0.0019%, iron 0.0009%, cobalt 0.0002%, zinc 0.0004%, copper 0.0001%, phosphorus 0.036%, manganese 0.0006%, iodide $1{\mu}g/g$. 2) Five kinds of vitamines were also found ; vitamin-$B_1$ $0.1{\mu}g/g$, vitamin-$B_2$ $0.5{\mu}g/g$, vitamin-C 0.3mg/g, niacin $14{\mu}g/g$, choline chloride 0.3mg/g. 3) Fresh elderberry juice also contains crude protein 1.10%, fat 0.26%, carbohydrate 6.9%, pectin 0.76%, tannin 0.89%, ash 0.80%, water 90.9% and 34.3 cal/100g. 4) The absorption spectrum of the purplishblack color of fresh elderberry juice has a peak between 523-530mm.

  • PDF

Rice Blast Control and Race Diversity by Mixed-Planting of Two Cultivars ('Hopyeongbyeo'/'Nampyeongbyeo') with Different Susceptibility to Magnaporthe oryzae (호평벼와 남평벼의 혼합재배에 의한 도열병 방제와 레이스 다양성의 변화)

  • Oh, In-Seok;Min, Ji-Young;Cho, Myung-Gil;Roh, Jae-Hwan;Shin, Dong-Bum;Song, Jin;Kim, Myeong-Ki;Cho, Young-Chan;Kim, Byung-Ryun;Han, Seong-Sook
    • Research in Plant Disease
    • /
    • v.14 no.3
    • /
    • pp.143-152
    • /
    • 2008
  • Mixed-planting of two rice cultivars, HP ('Hopyeongbyeo') and NP ('Nampyeongbyeo'), having a dissimilar susceptibility to rice blast was practiced for chemical-free control of rice blast in the field. The HP/NP combination was selected for applying under mechanized agricultural conditions. Because they have similar genetic characteristics such as seed germination and heading time, culm length, rice quality and size of rice grains except susceptibility to blast. Incidence of panicle blast was reduced 50.4 % compare with supposed blast incidence by HP/NP mixed-planting when the seeds of two cultivars were combined 1 to 1 as weight. Supposed blast incidence was estimated from reduction of rice blast caused by addition of a resistant cultivar NP. Race diversity of Magnaporthe oryzae was examined for correlation with control effect of HP/NP mixed-planting on rice blast. The population of dominant race KJ-101 was diminished and replaced with various co-existing races and eleven new races were appeared in mixed-planting plot. Total number of race isolated from mixed-planting plot was not largely different from mono-culture. However, detection frequency of the new race was increased and variation of the population size of each race was decreased in mixed-planting plots. It was shown that a biased community with a dominant race (KJ-101 or KI-181) was altered to a balanced one of coexisting races. From these results, it was supposed that the balanced diversity among co-existing races within a community might be correlated to control effect by HP/NP mixed-planting on rice blast. Further more, it should be studied that genetic characteristics of the individual race including a virulence on cv. HP and NP was examined for verifying a correlation of mixed-planting effect and race diversity.

Agricultural Geography of Rice Culture in California (미국 캘리포니아주(州)의 벼농사에 관한 농업지리학적 연구)

  • Lee, Jeon;Huh, Moo-Yul
    • Journal of the Korean association of regional geographers
    • /
    • v.2 no.1
    • /
    • pp.51-67
    • /
    • 1996
  • There are three main rice-growing regions in the United States: the prairie region along the Mississippi River Valley in eastern Arkansas; the Gulf Coast prairie region in southwestern Louisiana and southeastern Texas; and the Central Valley of California. The Central Valley of California is producing about 23% of the US rice(Fig. 1). In California. most of the crop has been produced in the Colusa, Sutter, Butte, Glenn Counties of the Sacramento Valley since 1912, when rice was commercially grown for the first time in the state(Fig. 2). Roughly speaking, the average annual area sown to rice in California is about 300,000 acres to 400,000 acres during the last forty years(Fig. 3). California rice is grown under a Mediterranean climate characterized by warm, dry, clear days, and a long growing season favorable to high photosynthetic rates and high rice yields. The average rice yield per acre is probably higher in California than in any other rice-growing regions of the world(Fig. 4). A dependable supply of irrigation water must be available for a successful rice culture. Most of the irrigation water for California rice comes from the winter rain and snow-fed reservoir of the Sierra Nevada mountain ranges. Less than 10 percent of rice irrigation water is pumped from wells in areas where surface water is not sufficient. It is also essential to have good surface drainage if maximum yields are to be produced. Rice production in California is highly mechanized, requiring only about four hours of labor per acre. Mechanization of rice culture in California includes laser-leveler technology, large tractors, self-propelled combines for harvesting, and aircraft for seeding, pest control, and some fertilization. The principal varieties grown in California are medium-grain japonica types with origins from the cooler rice climates of the northern latitudes (Table 1). Long-grain varieties grown in the American South are not well adapted to California's cooler environment. Nearly all the rice grown recently in California are improved into semidwarf varieties. Choice of variety depends on environment, planting date, quality desired, marketing, and harvesting scheduling. The Rice Experiment Station at Biggs is owned, financed, and administered by the rice industry. The station was established in 1912, as a direct result of the foresight and effort of Charles Edward Chambliss of the United States Department of Agriculture. Now, The station's major effort is the development of improved rice varieties for California.

  • PDF