• Title/Summary/Keyword: mechanistic-empirical pavement design guide (MEPDG)

Search Result 6, Processing Time 0.021 seconds

Comparative Analysis in Sensitivity of Cumulative Fatigue Damage of Mechanistic-Empirical Concrete Pavement Design Programs (역학적-경험적 콘크리트 포장설계 프로그램의 누적피로손상 민감도 비교분석)

  • Park, Joo-Young;Park, Jeong-Woo;Kim, Sang-Ho;Liu, Ju-Ho;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.15-24
    • /
    • 2012
  • The MEPDG(Mechanistic-Empirical Pavement Design Guide) developed based on the AASHTO Design Guide helps engineers find optimal alternatives by using traffic volume, climate, material property, and pavement structure as its input parameters. However, because technical problems were found in the MEPDG, efforts to improve the program by settling the problems have been continued. Meanwhile, another mechanistic-empirical design program has been developed by the KPRP(Korea Pavement Research Program) in Korea. To develop and improve the Korean design program reasonably, it is necessary to analyze the MEPDG and then compare programs each other. For concrete pavement, fatigue cracking is predicted by using very complicated logic different from other performance indicators. Therefore, in this paper, transfer functions of the fatigue cracking used in the version of 0.5, 1.0, and 1.1 of the MEPDG were analyzed. Sensitivity of the input parameters to the cumulative fatigue damage was compared to each other by the MEPDG version and KPRP.

Simple AC/CRC Composite Pavement Design Using MEPDG (MEPDG를 이용한 아스팔트/연속철근 콘크리트 복합포장 간편 설계)

  • Baek, Jongeun;Kim, Hyung Bae;Lee, Hyun Jong
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.1-8
    • /
    • 2014
  • PURPOSES : Analysis and design of asphalt concrete (AC) and continuously reinforced concrete (CRC) composite pavements. METHODS : In this study, the service life of the AC/CRC composite pavements was determined based on the probabilistic method in the mechanistic-empirical pavement design guide(MEPDG). Typical pavement design was provided with respect to heavy truck traffic volume of highways. RESULTS : The service life of the composite pavements based on IRI was shorter than that based on rutting at lower traffic volume, but this trend was switched at higher traffic volume. CONCLUSIONS : It is concluded that the main distress affecting the service life of the composite pavements was longitudinal roughness and rutting. Roughness became lower, but rut depth became greater as the stiffness of the CRC increased.

Improvement and Validation of an Overlay Design Equation in Seoul (서울형 포장설계식 개선 및 검증)

  • Kim, Won Jae;Park, Chang Kyu;Son, Tran Thai;Phuc, Le Van;Lee, Hyun Jong
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.49-58
    • /
    • 2017
  • PURPOSES : The objective of this study is to develop a simple regression model in designing the asphalt concrete (AC) overlay thickness using the Mechanistic-empirical pavement design guide (MEPDG) program. METHODS : To establish the AC overlay design equation, multiple regression analyses were performed based on the synthetic database for AC thickness design, which was generated using the MEPDG program. The climate in Seoul city, a modified Hirsh model for determining dynamic modulus of asphalt material, and a new damaged master curve approach were used in this study. Meanwhile, the proposed rutting model developed in Seoul city was then used to calibrate the rutting model in the MEPDG program. The AC overlay design equation is a function of the total AC thickness, the ratio of AC overlay thickness and existing AC thickness, the ratio of existing AC modulus and AC overlay modulus, the subgrade condition, and the annual average daily truck traffic (AADTT). RESULTS : The regression model was verified by comparing the predicted AC thickness, the AADTT from the model and the MEPDG. The regression model shows a correlation coefficient of 0.98 in determining the AC thickness and 0.97 in determining AADTT. In addition, the data in Seoul city was used to validate the regression model. The result shows that correlation coefficient between the predicted and measured AADTT is 0.64. This indicates that the current model is more accuracy than the previous study which showed a correlation coefficient of 0.427. CONCLUSIONS:The high correlation coefficient values indicate that the regression equations can predict the AC thickness accurately.

Development of Rutting Model for Asphalt Mixtures using Laboratory and Accelerated Pavement Testing (실내 및 포장가속시험를 이용한 아스팔트 혼합물의 소성변형 모형 개발)

  • Lee, Sang-Yum;Lee, Hyun-Jong;Huh, Jae-Won;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.79-89
    • /
    • 2008
  • The pavement performance model is the most important factor to determine the pavement life in the mechanistic-empirical pavement design guide (MEPDG). As part of Korean Pavement Research Program (KPRP), the Korean Pavement Design Guide (KPDG) is currently being developed based on mechanistic-empirical principle. In this paper, the rutting prediction model of asphalt mixtures, one of the pavement performance model, has been developed using triaxial repeated loading testing data. This test was conducted on various types of asphalt mixtures for investigating the rutting characteristics by varying with the temperature and air void. The calibration process was made for the coefficients of rutting prediction model using the accelerated pavement testing data. The accuracy of prediction model can be increased when by considering the effect of individual rutting properties of materials rather than shear stresses with depths.

  • PDF

An Experimental Evaluation and Comparative Evaluation on Pavement Design of Warm-Mix Asphalt Mixture Using Aspha-min (아스파민을 사용한 중온아스팔트혼합물의 실험적 평가와 포장설계 비교평가)

  • Jin, Myung-Sub
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.41-48
    • /
    • 2011
  • Warm-Mix Asphalt(WMA) mixtures, which meet environmental protection and have high energy efficiency, are emerging as an alternative to hot-mix asphalt mixtures. The objective of this study is to evaluate WMA made with Aspha-min in the laboratory and to compare the design results accomplished by new Mechanistic-Empirical Pavement Design Guide(MEPDG) with control mixture. An asphalt mixture with a nominal maximum size of 12.5mm and PG64-28 binder was used. Resilient modulus tests for a control mixture and WMA with 0.3% and 0.5% of Aspha-min were conducted. The results obtained by MEPDG after inputting the test output into the design indicated that the predicted rut depth of WMA using Aspha-min was much lower than that of control mixture, and showed that WMA was more resistant to rutting than control mixture.

A Study of Reliability of Predictive Models for Permanent Deformation and Fatigue Failure Related to Flexible Pavement Design (연성포장설계의 소성변형과 피로파괴 예측모델에 대한 신뢰성 연구)

  • Kim, Dowan;Han, Beomsoo;Kim, Yeonjoo;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.105-113
    • /
    • 2014
  • PURPOSES: The objective of this paper is to select the confidential intervals by utilizing the second moment reliability index(Hasofer and Lind; 1974) related to the number of load applications to failure which explains the fatigue failure and rut depth that it indicates the permanent deformation. By using Finite Element Method (FEM) Program, we can easily confirm the rut depth and number of load repetitions without Pavement Design Procedures for generally designing pavement depths. METHODS : In this study, the predictive models for the rut depth and the number of load repetitions to fatigue failure were used for determining the second moment reliability index (${\beta}$). From the case study results using KICTPAVE, the results of the rut depth and the number of load repetitions to fatigue failure were deducted by calculating the empirical predictive equations. Also, the confidential intervals for rut depth and number of load repetitions were selected from the results of the predictive models. To determine the second moment reliability index, the spreadsheet method using Excel's Solver was used. RESULTS : From the case studies about pavement conditions, the results of stress, displacement and strain were different with depth conditions of layers and layer properties. In the clay soil conditions, the values of strain and stresses in the directly loaded sections are relatively greater than other conditions. It indicates that the second moment reliability index is small and confidential intervals for rut depth and the number of load applications are narrow when we apply the clay soil conditions comparing to the applications of other soil conditions. CONCLUSIONS : According to the results of the second moment reliability index and the confidential intervals, the minimum and maximum values of reliability index indicate approximately 1.79 at Case 9 and 2.19 at Case 22. The broadest widths of confidential intervals for rut depth and the number of load repetitions are respectively occurred in Case 9 and Case 7.