• Title/Summary/Keyword: mechanism wheel

Search Result 254, Processing Time 0.028 seconds

Design and experiment of fuzzy PID yaw rate controller for an electrically driven four wheel vehicle without steering mechanism

  • I, H
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.480-489
    • /
    • 1999
  • Design and experimental results of yaw rate controller is described for electricallydriven four wheel vehicle without steering mechanism. Yaw rate controller has been known to be necessary to cope with nonlinear char-acteristics of the wheel/road conditions with respect to different road condition and steering angle. For an effective yaw rate control, a fuzzy PID gain scheduler is considered with changing control parameters. In order to apply proposed algorithm to the system a downsized four wheel drive electrically driven vehicle without steering mechanism was manufactured. With these techniques the proposed yaw rate controller is shown by experiment results to be obtained suficient performance in the whole steering regions.

  • PDF

Development of Monitoring Robot with Quadruped Link Mechanism (4족 링크 구조의 감시용 로봇 시스템 개발)

  • 정기범;박병훈;전병준;김동환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.46-46
    • /
    • 2000
  • A quadruped monitoring robot is introduced. The robot has several features that poses arbitrary position thanks to a 4-wheel hive mechanism, transmits an image and command data via RF wireless communication, and moreover, the imaged date are transferred through a network communication. The robot plays a role in monitoring what is happening around the robot and covers wide range due to a moving camera operated by the 4-wheel mechanism. The robot system can be applied k versatile models based the distinguished techniques introduced in this paper

  • PDF

Experimental study of generating mechanism about railway's squeal noise (철도차량 스킬소음의 발생메커니즘에 관한 실험연구)

  • Kim, Beom-Soo;Kim, Kwan-Ju;Kim, Sang-Soo;Kim, Jae-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1469-1472
    • /
    • 2006
  • This paper presents experimental analysis of a friction-driven wheel responsible for generating wheel squeal. Squeal noise generating mechanism has been examined under the laboratory condition. Model rig of the rail and the wheel are made and influential parameters to squeal noise e. g. frictional force, normal force between the rail and the wheel, creep speed of the wheel have been measured and calculated. Negative damping characteristic curve are calculated currently. Necessary relating computational analysis has been carried on also.

  • PDF

A study on the analysis of grinding mechanism by using optimum in-process electrolytic dressing (최적 연속 전해드레싱에 의한 연삭기구의 규명에 관한 연구)

  • Lee, Eun-Sang;Kim, Jeong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1298-1310
    • /
    • 1997
  • In recent years, grinding techniques for precision machining of brittle materials used in electric, optical and magnetic parts have been improved by using superabrasive wheel and precision grinding machine. The completion of optimum dressing of superabrasive wheel makes possible the effective precision grinding of brittle materials. However, the present dressing system cannot have control of optimum dressing of the superabrasive wheel. In this study, a new system and the grinding mechanism of optimum in-process electrolytic dressing were proposed. This system can carry out optimum in-process dressing of superabrasive wheel, and give very effective control according to unstable current and gap increase. Therefore, the optimum in-process electrolytic dressing is a good method to obtain the efficiency and mirror-like grinding of brittle materials.

Analysis on Climbing Capability of Wheel Drive Robotic Mechanisms (바퀴구동형 로봇 메커니즘의 등반능력 해석)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.329-334
    • /
    • 2008
  • It is well-known that a kind of wheel drive mechanism is usefully employed in various service robots. One of the essential requirements for such robots is regarded as the capability of climbing that enables them to run on an inclined road smoothly. So, this paper considers the capability of climbing in a wheel drive robotic mechanism and proposes a necessary discriminating condition to determine the specification of a driving actuator which will be employed. Consequently, it is expected that the proposed discriminating condition can be applied to wheel drive robotic mechanisms in the design aspect.

A Study on the High Precision Tape Feeding Device with Cam-slider Mechanism (정밀이송을 위한 캠-슬라이더 메커니즘 구조의 테이프 피더에 관한 연구)

  • Jeon Byung-Cheo;Cho Myeong-Woo;Kang Sung-Min;Lee Soo-Jin;Choi Jin-Hwa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.132-138
    • /
    • 2006
  • A tape feeder is an important part to supply a micro chip such as 1005 and 0603 components in SMT process. Traditional sprocket wheel type feeder has several problems such as backlash and indexing errors, low compatibility and confidence. However, it is very difficult to solve such problems due to the inevitable fraction defectives of sprocket wheel. Thus, the object of this works is to develop a linear type high precision tape feeding system using cam-slider mechanism. The proposed cam-slider mechanism is composed of several links and a plate, pneumatic actuator is used to generate linear motion. The proposed mechanism has distinct advantages over the conventional mechanism. It has reduced feeding errors, long lift-cycle, and slim width. As a result, the developed tape feeder using cam-slider mechanism shows special characteristics far high precision feeding for chip-mounters.

Wheel/Rail Adhesion for Improvement of Braking Performance (철도차량의 제동성능 향상을 위한 점착현상에 관한 연구)

  • 전규찬;황동환;김대은
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.68-73
    • /
    • 1997
  • The adhesion between wheel and rail plays an important role in the braking performance of trains. Though there have been numerous studies on the characteristics of adhesion phenomenon, a general understanding from the physical point of view is still lacking. In this work, the adhesion mechanism between wheel and rail was investigated by studying the mechanisms of pure rolling and sliding experiments. Tests were performed under various conditions to determine the physical phenomenon responsible for adhesion between wheel and rail. The results of this study is expected to aid in improving the braking performance of trains.

Development of a Theoretical Wheelset Model to Predict Wheel-climbing Derailment Behaviors Caused by Rolling Stock Collision (철도차량 충돌에 의한 타고오름 탈선거동 예측을 위한 단일윤축 이론모델 개발)

  • Choi, Se-Young;Koo, Jeong-Seo;You, Won-Hee
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • This study formulates the theoretical wheel-set model to evaluate wheel-climbing derailments of rolling stock due to collision, and verifies this theory with dynamic simulations. The impact forces occurring during collision are transmitted from a car body to axles through suspensions. As a result of combinations of horizontal and vertical forces applied to axles, rolling stock may lead to derailment. The derailment type will depend on the combinations of the horizontal and vertical forces, flange angle and friction coefficient. According to collision conditions, the wheel-lift, wheel-climbing or roll-over derailments can occur between wheel and rail. In this theoretical derailment model of wheelset, the wheel-climbing derailment types are classified into Climb-over, Climb/roll-over, and pure Roll-over according to derailment mechanism between wheel and rail, and we proposed the theoretical conditions to generate each derailment mechanism. The theoretical wheel-set model was verified by dynamic simulations.