• 제목/요약/키워드: mechanically alloying

검색결과 118건 처리시간 0.026초

Effect of Mechanical Alloying on Combustion Densification of MoSi$_2$

  • Park, Hyung-Sang;Park, Jin-Seong;Ka, Mi-da;Shin, Kwang-Seon;Kim, Yong-Seong
    • 한국분말재료학회지
    • /
    • 제5권4호
    • /
    • pp.312-318
    • /
    • 1998
  • The effect of the mechanical alloying of elemental Mo and Si powders on the combustion densification behavior of MoSi$_2$ was investigated. The ignition temperature of the combustion reaction of the mechanically alloyed powder was measured to be significantly lower than that of the powder mixture prepared by the low energy ball milling process. The densification of the products after the combustion reaction under compressive pressure from the mechanically alloyed powders, however, was found to be poorer than that of the products from the ball milled powder.

  • PDF

Modification of Low Alloyed Steels by Manganese Additions

  • Sicre-Artalejo, J.;Campos, M.;Torralba, JM
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.933-934
    • /
    • 2006
  • The present study examines the sintering behaviour and effect of manganese addition both mechanically-blended and mechanically alloyed on Cr-Mo low alloyed steels to enhance the mechanical properties. Mn sublimation during sintering provides some specific phenomena which facilitate the sintering of alloying elements with high oxygen affinity. First step is the optimization of milling time to attain a master alloy with 50% of Mn which is diluted in Fe-1.5Cr-0.2Mo water atomized prealloyed powder by normal mixing. These mixtures are pressed to a green density of $7.1g/cm^3$ and sintered at $1120^{\circ}C$ in $90N_2-10H_2$ atmosphere.

  • PDF

Characterization of Mechanical Alloying Processed Ti-Si-B Nanocomposite Consolidated by Spark Plasma Sintering

  • Lee, Hyung-Bock;Kwon, In-Jong;Lee, Hyung-Jik;Han, Young-Hwan
    • 한국세라믹학회지
    • /
    • 제45권12호
    • /
    • pp.815-820
    • /
    • 2008
  • The microstructure and mechanical properties of $TiB_2/Si$ nanocomposites based on the Ti-Si-B system, consolidated by spark plasma sintering of mechanically alloyed activated nanopowders, have been characterized. Mechanical Alloying was carried out in a planetary ball mill for 180 min with 350 rev $min^{-1}$. The powders were pressed in vacuum at a pressure of 60 MPa, generating a maximum temperature in the graphite mould of $1400^{\circ}C$. Analysis of the synthesized nanocomposites by SEM, XRD and TEM showed them to consist of $TiB_2$ second phase, sub-micron in size, with no third phase. Composites consolidated from powders mechanically alloyed from an initial elemental powder mix of 0.3 mol Si, 0.7 mol Ti, and 2.0 mol B achieved the best relative density (97%) and bending strength (774 MPa); the highest Vickers hardness of 14.7 GPa was achieved for the 0.1-0.9-2.0 mol starting composition.

Fabrication of TiAl Target by Mechanical Alloying and Applications in Physical Vapour Deposition Coating

  • Gabbitas, Brian;Cao, Peng;Raynova, Stiliana;Zhang, Deliang
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.729-730
    • /
    • 2006
  • The research involves the development of a powder metallurgical route for producing good quality TiAl targets for making physical vapour deposition (PVD) coatings. Mixtures of elemental titanium and aluminium powders were mechanically milled using a novel discus milling technique under various conditions. Hot isotropic pressing (HIP) was then employed for consolidation of the mechanically alloyed powders. A cathodic arc vapour deposition process was applied to produce a TiAlN coating. Microstructural examination was conducted on the target material and PVD coatings, using X-ray diffractometry (XRD), X-ray photoelectron spectrometry (XPS) and scanning electron microscopy (SEM). It has been found that combining mechanical alloying and HIP enable us to produce fairly good quality of TiAl based target. The PVD coatings obtained from the TiAl target showed very high microhardness values.

  • PDF

Precipitation Behavior of ${\gamma}"$ in Severely Plastic Deformed Ni-base Alloys

  • Kim, Il-Ho;Kwun, S.I.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.962-963
    • /
    • 2006
  • The precipitation behaviors of ${\gamma}"(Ni_3Nb)$ in four Ni-base alloys were investigated. The four alloys were forged Ni20Cr20Fe5Nb alloy, mechanically alloyed Ni20Cr20Fe5Nb alloy, IN 718 alloy and ECAPed(equal channel angular pressing) IN 718 alloy. Aging treatment was employed at either $600^{\circ}C$ or $720^{\circ}C$ for 20 hrs. The TEM observation and hardness test were performed to identify the formation of ${\gamma}"$. The precipitation of ${\gamma}"$ was noticed after aging at $600^{\circ}C$ for 20 hrs in the mechanically alloyed Ni20Cr20Fe5Nb alloy and ECAPed IN 718 alloy, while it was observed after aging at $720^{\circ}C$ for 20 hrs in the forged Ni20Cr20Fe5Nb alloy and IN 718 alloy before ECAP. The lower aging temperature for ${\gamma}"$ precipitation in the mechanically alloyed Ni20Cr20Fe5Nb alloy and ECAPed IN 718 alloy than in the forged Ni20Cr20Fe5Nb alloy and IN 718 alloy before ECAP appeared to be due to the severe plastic deformation which occurred during mechanical alloying or ECAP.

  • PDF

기계적 합금화법으로 제조된 Cu/TiO2 촉매용 분말의 상변화 특성 (Phase Transformation Properties of Cu/TiO2 Photocatalyst Powders Fabricated by Mechanical Alloying)

  • 안인섭;배승열;이영란;고봉석
    • 한국분말재료학회지
    • /
    • 제9권2호
    • /
    • pp.110-115
    • /
    • 2002
  • In order to obtain the nano size $10wt%Cu-TiO_2$composite powders by mechanical alloying method for useful composite catalysis, the effects of mechanical alloying time on the formationof $10wt%Cu-TiO_2$ composite powders were analyzed. The phase transformation behaviors were experimented as the heat treating temperature increased. Homogeneous 10wt% Cu-rutile type $TiO_2$composite powders were synthesized in 40 hours by mechanical alloying. After 60 hours mechanical alloying 50 nm size $TiO_2$powders were obtained. Both the phase of mechanically alloyed 10 wt% $Cu-TiO_2$ and pure $TiO_2$ powders were not transformed to anatase after annealing at the temperature range between 350 to 500 $^{\circ}C$. The intermetallic compound of $Cu_2Ti_4$O was formed after 10 hours mechanical alloying, however it could be considered that this intemetallic phase dose not prevent the transformation of rutile $TiO_2$ to the anatase phase after heat treatment at the temperature between 350 and $550^{\circ}C$.

기계적 합금화 방법으로 제조된 Nanostructured Cu-Pb 합금의 물성 연구 (On the Properties of Nanostructured Cu-Pb Alloys Prepared by Mechanical Alloying)

  • 김진천
    • 한국분말재료학회지
    • /
    • 제3권1호
    • /
    • pp.33-41
    • /
    • 1996
  • Nanostructured Cu-Pb powders were synthesized by mechanical alloying process. The variation of powder characteristics with mechanical alloying time was investigated by x-ray diffraction, differential scanning calorimetry, SEM and TEM. An electrical resistivity of the hot pressed specimens was also measured by using the nanovoltmeter. It was shown that mechanical alloying for 12 hours leads to a homogenization and a grain refinement to the nanometer scale under 20 nm. The mechanically alloyed Cu-Pb alloys represented the enhanced solid solubility of 10wt% Pb in the Cu matrix. The monotectic temperature of nanostructured Cu-Pb alloy decreased from equilibrium state of 955$^{\circ}C$ to 855$^{\circ}C$ due to reduced grain size effect. The analysis of electrical resistivity showed that the hot pressed MA Cu-5wt% Pb compact existed as a solid solution.

  • PDF

기계적합금화 NiAl 분말과 볼밀혼합된 (Ni+Al) 분말의 방전플라즈마소결 (Spark-Plasma Sintering of Mechanically-alloyed NiAl Powder and Ball-milled (Ni+Al) Powder Mixture)

  • 장영일;김지순;안인섭;김영도;권영순
    • 한국분말재료학회지
    • /
    • 제7권3호
    • /
    • pp.161-167
    • /
    • 2000
  • Mechanically-alloyed NiAl powder and ball-milled (Ni+Al) powder mixture were sintered by spark-plasma sintering(SPS) process. Mechanical alloying was performed in a horizontal attritor for 20 h with rotation speed of 600 rpm. (Ni+Al) powder mixtures were prepared by ball milling for 1 and 10 h with 120 rpm. Both powders were sintered at $1150^{\circ}C$ for 5 min under $10^{-3}$ torr vacuum with 50 MPa die pressure in a SPS facility. Sintered densities of 97% and 99% were obtained from mechanically-alloyed NiAl powder and (Ni+Al) powder mixture, respectively. The sintered compact of (Ni+Al) powder mixture showed large grain size by a very rapid grain growth, while the grain size of mechanically-alloyed NiAl powder compact after sintering was extremely fine(80 nm). The difference in densification behavior of both powders were discussed.

  • PDF