• Title/Summary/Keyword: mechanical strength

Search Result 10,408, Processing Time 0.037 seconds

Mechanical Properties of High Strength Shear Connector (고강도(高强度) 스터드 볼트의 역학적 특성에 관한 연구)

  • Eom, Chul Hwan
    • KIEAE Journal
    • /
    • v.12 no.5
    • /
    • pp.93-98
    • /
    • 2012
  • The headed studs those are used extensively for steel-composite construction is specified as SS400 at the current Korean Standard specification considering the welding condition. And the corresponding equation for the shear force calculation is limited for the use of compression strength of concrete below $300kg/cm^2$. However, it is expected that the high strengthening and precast of both steel and concrete due to the necessity of shear connector or other connecting material for the combination of steel and concrete. Therefore, the experimental results obtained during the development process of high strength stud for the connection of high strength concrete and the steel member are reported in this paper. Also the effectiveness of newly developed shear connector using pipe to increase the stiffness of a stud is verified by comparing both the stiffness and the strength with common stud bolt through the welding ability, mechanical characteristics and experimental investigation.

Effects of Reactive Diluents on the Electrical Insulation Breakdown Strength and Mechanical Properties in an Epoxy System

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.4
    • /
    • pp.199-202
    • /
    • 2013
  • In order to study the effect of reactive diluents on the electrical insulation breakdown strength and mechanical properties of, a polyglycol and an aliphatic epoxy were individually introduced to an epoxy system. Reactive diluents were used in order to decrease the viscosity of the epoxy system; polyglycol acted as a flexibilizer and 1,4-butanediol diglycidyl ether (BDGE) acted as an aliphatic epoxy, which then acted as a chain extender after curing reaction. The ac electrical breakdown strength was estimated in sphere-to-sphere electrodes and the electrical breakdown strength was estimated by Weibull statistical analysis. The scale parameters of the electrical breakdown strengths for the epoxy resin, epoxy-polyglycol, and epoxy-BDGE were 45.0, 46.2, and 45.1 kV/mm, respectively. The flexural and tensile strengths for epoxy-BDGE were lower than those of the epoxy resin and those for epoxy-polyglycol were lower than those of the epoxy resin.

Study on Electrical and Mechanical Properties of High Viscosity Solid Epoxy / Silica and Alumina Composite (고점도형 고상에폭시/실리카와 알루미나 콤포지트의 전기적, 기계적 특성연구)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1330-1337
    • /
    • 2018
  • In this study, 40, 50, 60, and 70 wt% filler dispersed samples were prepared for the current GIS Spacer or environmentally friendly GIS. In the AC electrical breakdown, EMSC and EMAC decreased with increasing filler content, and EMSC showed better breakdown strength than EMAC. The mechanical properties such as tensile strength and flexural strength of EMSC and EMAC were also increased with increasing filler content. In addition, EMSC results in better mechanical properties than EMAC. The reason for this is considered to be one in which the influence of the interface is important.

Modeling of concrete containing steel fibers: toughness and mechanical properties

  • Cagatay, Lsmail H.;Dincer, Riza
    • Computers and Concrete
    • /
    • v.8 no.3
    • /
    • pp.357-369
    • /
    • 2011
  • In this study, effect of steel fibers on toughness and some mechanical properties of concrete were investigated. Hooked-end steel fibers were used in concrete samples with three volume fractions (${\nu}_f$) of 0.5%, 0.75% and 1% and for two aspect ratios (l/d) of 45 and 65. Compressive and flexural tensile strength and modulus of elasticity of concrete were determined for cylindrical, cubic and prismatic samples at the age of 7 and 28 days. The stress-strain curves of standard cylindrical specimens were studied to determine the effect of steel fibers on toughness of steel-fiber-reinforced concrete (SFRC). In addition, the relationship between compressive strength and the flexural tensile strength of SFRC were reported. Finally, a simple model was proposed to generate the stress-strain curves for SFRC based on strains corresponding to the peak compressive strength and 60% of peak compressive stress. The proposed model was shown to provide results in good correlation with the experimental results.

Evaluation of the Plastic η-Factor Considering Strength Mismatch in a Narrow Gap Welding Part (I) (협계용접부 강도 불균일을 고려한 소성 η계수 평가 (I))

  • Huh, Yong;Kim, Hyung-Ick;Seon, Kwang-Sang;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.6
    • /
    • pp.504-511
    • /
    • 2008
  • This study evaluated the influence of the strength mismatch of HAZ for a plastic ${\eta}$-factor, which is the principle parameter determining the plastic portion of J-integral to assess the fracture toughness of the weldment. The specimen of tensile and hardness test was manufactured from the piping applying narrow-gap welding, and the mechanical properties of weldment, HAZ and a base metal were obtained. To perform the finite element analysis according to the ratio of strength mismatch, the material properties was chosen with the change of strength using the determination method of Ramberg-Osgood constant. Also, the influence of the strength mismatch of HAZ was determined using finite element analysis by those properties.

Microstructure and Mechanical Strength of Hardened Paste of Hydroxyapatite Cement Containing Whisker Phase (휘스커상을 함유한 수산화아파타이트시멘트 경화체의 미구조-강도 특성)

  • 손영도;송태웅
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.12
    • /
    • pp.1342-1349
    • /
    • 1999
  • In order to improve the density and the mechanical strength without change in chemical composition the hardened pastes of hydroxyapatite cement were reinforced with powders and/or whiskers of hydroxyapatite. The powders behaved as a seed of hydroxyapatite formation rather than a filler while the whiskers were mrerly dispersed in matrix and capillary pores of the hardened bodies leading to increase in mechanical strength. But the increase in strength But the increase in strength was nnt enough owing to the lack of homogeneous dispersion of the fibers. The highest diametral tensile strength of 18.5 MPa was measured at the hardened hydroxyapatite body in which well-dispersed whisker phase formed uniformly during hydro-thermal curing of power-added and dry-formed hydroxyapatite cement.

  • PDF

Using generalized regression neural network (GRNN) for mechanical strength prediction of lightweight mortar

  • Razavi, S.V.;Jumaat, M.Z.;Ahmed H., E.S.;Mohammadi, P.
    • Computers and Concrete
    • /
    • v.10 no.4
    • /
    • pp.379-390
    • /
    • 2012
  • In this paper, the mechanical strength of different lightweight mortars made with 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 and 100 percentage of scoria instead of sand and 0.55 water-cement ratio and 350 $kg/m^3$ cement content is investigated. The experimental result showed 7.9%, 16.7% and 49% decrease in compressive strength, tensile strength and mortar density, respectively, by using 100% scoria instead of sand in the mortar. The normalized compressive and tensile strength data are applied for artificial neural network (ANN) generation using generalized regression neural network (GRNN). Totally, 90 experimental data were selected randomly and applied to find the best network with minimum mean square error (MSE) and maximum correlation of determination. The created GRNN with 2 input layers, 2 output layers and a network spread of 0.1 had minimum MSE close to 0 and maximum correlation of determination close to 1.

A COMPARATIVE STUDY ON THE MECHANICAL PROPERTIES OF CONDENSABLE COMPOSITE RESINS (응축형 복합레진의 기계적 성질에 관한 비교연구)

  • 정지아;문주훈;조영곤
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.6
    • /
    • pp.485-491
    • /
    • 2001
  • The purpose of this study was to compare the mechanical properties of three condensable composite resins and one hybrid composite resin. The compressive strength, diametral tensile strength, Vicker's microhardness were tested for mechanical properties of condensable composite resins (SureFil, Ariston pHc, Synergy compact), and hybrid composite resin (Z 100). The tested materials were divided into four groups: control group Z 100 (3M Co. USA), experimental group I Ariston pHc, (Vivadent, Co., Liechtenstein) experimental group II SureFil (Dentsply, Co., U.S.A.), experimental group III Synergy Compact (Coltene, Co., Swiss). According to the above classification, we made samples of SureFil, Ariston pHc, Synergy Compact, Z 100 with separable cylindrical metal mold. And then, we measured and compared the value of compressive strength, diametral tensile strength and Vicker's microhardness of each sample. (omitted)

  • PDF

Effect of Marine Environment and Underwater Construction on Mechanical Properties of High Strength Grout (해상환경 및 수중타설이 고강도 그라우트의 역학적 성능에 미치는 영향)

  • Kim, Beom-Hwi;Son, Da-Som;Yi, Chong-Ku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.89-90
    • /
    • 2023
  • In this study, grout was poured into seawater to confirm the effect of similar marine environment and underwater erosion on the mechanical performance of domestically produced high-performance grout and compared with the existing strength. As a result of the compressive strength measurement, the specimen that simultaneously performed underwater drilling and seawater curing showed slow initial strength expression in both H1 and H2, and from the 7th day, it was confirmed to be within 2% of the existing intensity. It is believed that both grout were caused by disturbance with water during underwater drilling, and the same strength was subsequently shown as the existing strength.

  • PDF

Mechanical Strength Characteristics of Fiber Bragg Gratings with Fabrication Process (광섬유 브래그 격자의 제작 방법에 따른 기계적 강도 특성)

  • Park S. O.;Kim C. G.;Kang D. H.
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.16-22
    • /
    • 2005
  • Application fields on structural health monitoring of fiber Bragg gratings (FBGs) are gradually expanded even to a primary structure as well as a secondary structure and a specimen. For the reason, verification for the reliability of FBGs such as signal characteristics and mechanical strength becomes much more important. In this study, mechanical strength characteristics of FBGs with their fabrication process and reflectivity are investigated with various grating lengths. From the results of tension tests, it is shown that the mechanical strength of optical fibers decreases about $50\%$ just by jacket stripping and the amount of decrease is dependent on stripping methods. About $55\%$ of mechanical strength of stripped optical fibers decreases if gratings are formed in the core and it is regardless of grating lengths and reflectivity. However, the width of strength distribution increases relative to increases in reflectivity.