• Title/Summary/Keyword: mechanical strength

Search Result 10,408, Processing Time 0.033 seconds

Tensile and Compressive Strength Characteristics of Aluminized Paraffin Wax Fuel for Various Particle Size and Contents (파라핀/알루미늄 연료의 알루미늄 입자크기 및 함유비 변화에 따른 인장 및 압축강도 특성 연구)

  • Ryu, Sunghoon;Han, Seongjoo;Kim, Jinkon;Moon, Heejang;Kim, Junhyung;Ko, Seung Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.5
    • /
    • pp.70-76
    • /
    • 2016
  • Tensile and compressive strength tests were conducted to investigate the mechanical characteristics of aluminized paraffin wax fuel for hybrid gas generator applications. Mixtures of 0 wt%, 10 wt% and 30 wt% nano aluminum paraffin coupons as well as 5 wt%, 10 wt% and 15 wt% micro aluminum paraffin coupons were used. The average particle size of 100nm and of $8{\mu}m$ mixed each with microcrystalline paraffin wax(Sasol 0907) were chosen for the base specimens where the tensile strength test followed the ASTM-D638 specimen standard while the compressive strength test followed the ASTM D575-91. It was found that nano based specimens increased both the tensile and compressive strength enhancing the mechanical behavior of paraffin wax whereas the micro based specimens gave still less influential effect.

Mechanical behavior of composite gel periodic structures with the pattern transformation

  • Hu, Jianying;He, Yuhao;Lei, Jincheng;Liu, Zishun;Swaddiwudhipong, Somsak
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.605-616
    • /
    • 2014
  • When the periodic cellular structure is loaded or swelling beyond the critical value, the structure may undergo a pattern transformation owing to the local elastic instabilities, thus leading to structural collapse and the structure changing to a new configuration. Based on this deformation-triggered pattern, we have proposed the novel composite gel materials. This designed material is a type of architectural material possessing special mechanical properties. In this study, the mechanical behavior of the composite gel periodic structure with various gel inclusions is studied further through numerical simulations. When pattern transformation occurs, it results in a different elastic relationship compared with the material at untransformed state. Based on the obtained nominal stress versus nominal strain behavior, the Poisson's ratio and corresponding deformed structure patterns, we investigate the performance of designed composite materials and the effects of the uniformly distributed gel inclusions on composite materials. A better understanding of the characteristics of these composite gel materials is a key to develop its potential applications on new soft machines.

Mechanical and thermal properties of polyamide versus reinforced PMMA denture base materials

  • Soygun, Koray;Bolayir, Giray;Boztug, Ali
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.153-160
    • /
    • 2013
  • PURPOSE. This in vitro study intended to investigate the mechanical and thermal characteristics of Valplast, and of polymethyl methacrylate denture base resin in which different esthetic fibers (E-glass, nylon 6 or nylon 6.6) were added. MATERIALS AND METHODS. Five groups were formed: control (PMMA), PMMA-E glass, PMMA-nylon 6, PMMA-nylon 6.6 and Valplast resin. For the transverse strength test the specimens were prepared in accordance with ANSI/ADA specification No.12, and for the impact test ASTM D-256 standard were used. With the intent to evaluate the properties of transverse strength, the three-point bending (n=7) test instrument (Lloyd NK5, Lloyd Instruments Ltd, Fareham Hampshire, UK) was used at 5 mm/min. A Dynatup 9250 HV (Instron, UK) device was employed for the impact strength (n=7). All of the resin samples were tested by using thermo-mechanical analysis (Shimadzu TMA 50, Shimadzu, Japan). The data were analyzed by Kruskal-Wallis and Tukey tests for pairwise comparisons of the groups at the 0.05 level of significance. RESULTS. In all mechanical tests, the highest values were observed in Valplast group (transverse strength: $117.22{\pm}37.80$ MPa, maximum deflection: $27.55{\pm}1.48$ mm, impact strength: $0.76{\pm}0.03$ kN). Upon examining the thermo-mechanical analysis data, it was seen that the E value of the control sample was 8.08 MPa, higher than that of the all other samples. CONCLUSION. Although Valplast denture material has good mechanical strength, its elastic modulus is not high enough to meet the standard of PMMA materials.

Effects of Strain Rate and Temperature on Fracture Strength of Ceramic/Metal Joint Brazed with Ti-Ag-Cu Alloy

  • Seo, Do-Won;Lim, Jae-Kyoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1078-1083
    • /
    • 2002
  • Ceramics are significantly used in many industrial applications due to their excellent mechanical and thermal properties such as high temperature strength, low density, high hardness, low thermal expansion, and good corrosion resistive properties, while their disadvantages are brittleness, poor formability and high manufacturing cost. To combine advantages of ceramics with those of metals, they are often used together as one composite component, which necessiates reliable joining methods between metal and ceramic. Direct brazing using an active filler metal has been found to be a reliable and simple technique, producing strong and reliable joints. In this study, the fracture characteristics of Si$_3$N$_4$ ceramic joined to ANSI 304L stainless steel with a Ti-Ag-Cu filler and a Cu (0.25-0.3 mm) interlayer are investigated as a function of strain rate and temperature. In order to evaluate a local strain a couple of strain gages are pasted at the ceramic and metal sides near joint interface. As a result the 4-point bending strength and the deflection of interlayer increased at room temperature with increasing strain rate. However bending strength decreased with temperature while deflection of interlayer was almost same. The fracture shapes were classified into three groups ; cracks grow into the metal-brazing filler line, the ceramic-brazing filler line or the ceramic inside.

Humidity Aging Effect on Adhesive Strength of Composite Single-lap Joint

  • Kim, Myungjun;Kim, Yongha;Kim, Pyunghwa;Roh, Jin-Ho;Park, Jungsun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.56-62
    • /
    • 2017
  • Because adhesively bonded joints are used in many structural systems, it is important to predict accurate adhesive strengths. Composite aircraft with many joints are easily exposed to low temperatures and high relative humidity. This paper presents a humidity aging effect on the adhesive strength of a composite single-lap joint (SLJ). The adhesive strength of the SLJ is predicted using a finite element analysis with a cohesive zone model (CZM) technique. The humidity aging effect is evaluated based on the adhesive strength and CZM parameters. A lap joint test is carried out on the composite SLJ specimens, which are exposed for four months of 100% R.H. at $25^{\circ}C$. The predicted strengths are in good agreement with experimental data, and the actual crack propagation is satisfactorily simulated using the local CZM technique.

A Study on the Effect of Residual Stress between Body and Glaze of Pottery on the Mechanical Strength (도자기 소지와 유약의 잔류 응력이 기계적 강도에 미치는 영향에 관한 연구)

  • Lee, Jin-Ha;Na, Eun-Sang;Choe, Seong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.181-187
    • /
    • 1999
  • In this study, the effect of residual stress on mechanical strength was investigated with 1 kind of whiteware body and 4 kinds of glazes which are produced in succeeding ceramic art place. Using dipping method, the body was coated for different times in order to manipulate the coating thickness and sintered in the different temperatures ($1200^{\circ}C$, $1250^{\circ}C$, $1300^{\circ}C$, $1350^{\circ}C$) for two thus hours. The sintered bodies were characterized by XRD, EPMA, FEM and UTM in order to study the forming of reaction layer between body and glazes, residual stresses and the effects of residual stresses on mechanical strength of pottery. At $1300{\circ}C$, we obtained maximum density and mechanical strength. By the finite element method, the residual stresses in surface of body were minimum in specific thickness of glazes and the mechanical strength of body in that thickness of glazes showed maximum when the firing temperature was settled.

  • PDF

Evaluation of Residual Strength of Carbon/Epoxy Laminates Due to Low Velocity Impact Damage (Carbon/Epoxy 적층판의 저속충격손상에 따른 잔류강도 평가)

  • Kang, Min-Sung;Choi, Jung-Hun;Kim, Sang-Young;Koo, Jae-Mean;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.102-108
    • /
    • 2010
  • Recently, carbon fiber reinforced plastic(CFRP) composite materials have been widely used in various fields of engineering because of its advanced properties. Also, CFRP composite materials offer new design flexibilities, corrosion and wear resistance, low thermal conductivity and increased fatigue life. However CFRP composite materials are susceptible to impact damage due to their lack of through-thickness reinforcement and it causes large drops in the load-carrying capacity of a structure. Therefore, the impact damage behavior and subsequently load-carrying capacity of impacted composite materials deserve careful investigation. In this study, the residual strength and impact characteristics of plain-woven CFRP composites with impact damage are investigated under axial tensile test. By using obtained residual strength and Tan-Cheng failure criterion, residual strength of CFRP laminate with arbitrary fiber angle were evaluated.

Predicting unconfined compression strength and split tensile strength of soil-cement via artificial neural networks

  • Luis Pereira;Luis Godinho;Fernando G. Branco
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.611-624
    • /
    • 2023
  • Soil properties make it attractive as a building material due to its mechanical strength, aesthetically appearance, plasticity, and low cost. However, it is frequently necessary to improve and stabilize the soil mechanical properties with binders. Soil-cement is applied for purposes ranging from housing to dams, roads and foundations. Unconfined compression strength (UCS) and split tensile strength (CD) are essential mechanical parameters for ascertaining the aptitude of soil-cement for a given application. However, quantifying these parameters requires specimen preparation, testing, and several weeks. Methodologies that allowed accurate estimation of mechanical parameters in shorter time would represent an important advance in order to ensure shorter deliverable timeline and reduce the amount of laboratory work. In this work, an extensive campaign of UCS and CD tests was carried out in a sandy soil from the Leiria region (Portugal). Then, using the machine learning tool Neural Pattern Recognition of the MATLAB software, a prediction of these two parameters based on six input parameters was made. The results, especially those obtained with resource to a Bayesian regularization-backpropagation algorithm, are frankly positive, with a forecast success percentage over 90% and very low root mean square error (RMSE).

Unified prediction models for mechanical properties and stress-strain relationship of dune sand concrete

  • Said Ikram Sadat;Fa-xing Ding;Fei Lyu;Naqi Lessani;Xiaoyu Liu;Jian Yang
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.595-606
    • /
    • 2023
  • Dune sand (DS) has been widely used as a partial replacement for regular sand in concrete construction. Therefore, investigating its mechanical properties is critical for the analysis and design of structural elements using DS as a construction material. This paper presents a comprehensive investigation of the mechanical properties of DS concrete, considering different replacement ratios and strength grades. Regression analysis is utilized to develop strength prediction models for different mechanical properties of DS concrete. The proposed models exhibit high calculation accuracy, with R2 values of 0.996, 0.991, 0.982, and 0.989 for cube compressive strength, axial compressive strength, splitting tensile strength, and elastic modulus, respectively, and an error within ±20%. Furthermore, a stress-strain relationship specific to DS concrete is established, showing good agreement with experimental results. Additionally, nonlinear finite element analysis is performed on concrete-filled steel tube columns incorporating DS concrete, utilizing the established stress-strain relationship. The analytical and experimental results exhibit good agreement, confirming the validity of the proposed stress-strain relationship for DS concrete. Therefore, the findings presented in this paper provide valuable references for the design and analysis of structures utilizing DS concrete as a construction material.

Improvements of Impact strength in Glass Fiber/Polypropylene Composite by Silane Coupling Agents (실란커플링제에 의한 유리섬유/폴리프로필렌 복합재료의 충격강도 증가에 관한 연구)

  • 정광보
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.43-47
    • /
    • 2001
  • Effect of coupling agent on the mechanical properties of PP/GF blend was investigated. The flexural modulus, Izod impact strength, elongation at yield and tensile strength were improved with using coupling agent. Mopological studies revealed that PP and GF were incompatible and addition of coupling agent was very effective to enhance the compatibility, result in mechanical properties.

  • PDF