• Title/Summary/Keyword: mechanical strain

Search Result 3,716, Processing Time 0.026 seconds

Experiment of Flexural Behavior of Prestressed Concrete Beams with External Tendons according to Tendon Area and Tendon Force (강선량 및 긴장력에 따른 외부 강선을 가진 PSC 보의 휨거동 실험)

  • Yoo, Sung-Won;Yang, In-Hwan;Suh, Jeong-In
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.513-521
    • /
    • 2009
  • Recently, the externally prestressed unbonded concrete structures are increasingly being built. The mechanical behavior of prestressed concrete beams with external unbonded tendon is different from that of normal bonded PSC beams in that the slip of tendons at deviators and the change of tendon eccentricity occurs as external loads are applied in external unbonded PSC beams. The purpose of the present paper is therefore to evaluate the flexural behavior by performing static flexural test according to tendon area and tendon force. From experimental results, before flexural cracking, there was no difference between external members and bonded members. However, after cracking, yielding load of reinforcement, ultimate load, and the tendon stress of external members was lower than that of bonded members. For the relationship of load-tendon stress, the increasing of tendon strain was inversely proportional to the initial tendon force. However, even if the initial tendon force was large, the tendon strain with small effective stress was smaller than that with large effective stress. The concrete compressive strain was proportional to the effective stress of external tendon. From the comparison between test results and codes, the ACI-318 could not consider the effect of tendon force or effective stress, and especially the results of ACI-318 were very small, so it was very conservative. And the AASHTO 1994 could be influenced on the tendon area, initial force and effective stress, but as it was made on the basis of internal unbonded tendon, its results were much larger than the test results. For this reason, the new correct predict equation of external tendon stress will be needed.

Biaxial Strain Analysis of Various Fixation Models in Porcine Aortic and Pulmonary Valves (돼지 대동맥 판막과 폐동맥 판막의 고정 방법에 따른 양방향 압력-신장도의 비교분석)

  • Cho, Sung-Kyu;Kim, Yong-Jin;Kim, Soo-Hwan;Choi, Seung-Hwa
    • Journal of Chest Surgery
    • /
    • v.42 no.5
    • /
    • pp.566-575
    • /
    • 2009
  • Background: The function of a bioprosthetic heart valve is determined largely by the material properties of the valve cusps. The uniaxial tensile test has been studied extensively. This type of testing, however, does not replicate the natural biaxial loading condition. The objective of the present study was to investigate the regional variability of the biaxial strain versus pressure relationship based on the types of fixation liquid models. Material and Method: Porcine aortic valves and pulmonary valves were assigned to three groups: the untreated fresh group, the fixed with glutaraldehyde (GA) group, and the glutaraldehyde with solvent (e.g., ethanol) group. For each group we measured the radial and circumferential stretch characteristics of the valve as a function of pressure change. Result: Radial direction elasticity of porcine aortic and pulmonary valves were better than circumferential direction elasticity in fresh, GA fixed and GA+solvent fixed groups (p=0.00). Radial and circumferential direction elasticity of pulmonary valves were better than aortic valves in GA fixed, and GA+solvent fixed groups (p=0.00). Radial and circumferential direction elasticity of aortic valves were decreased after GA and GA+solvent fixation(p=0.00), except for circumferential elasticity of GA+solvent fixed valves (p=0.785). The radial (p=0.137) and circumferential (p=0.785) direction of elasticity of aortic valves were not significantly different between GA fixed. and GA+solvent fixed groups. Radial (p=0.910) and circumferential (p=0.718) direction of elasticity of pulmonary valve also showed no significant difference between GA fixed and GA+solvent fixed groups. Conclusion: When fixing porcine valves with GA, adding a solvent does not cause a loss of mechanical properties, but, does not improve elasticity either. Radial direction elasticity of porcine aortic and pulmonary valves was better than circumferential direction elasticity.

A study on the field tests and development of quantitative two-dimensional numerical analysis method for evaluation of effects of umbrella arch method (UAM 효과 평가를 위한 현장실험 및 정량적 2차원 수치해석기법 개발에 관한 연구)

  • Kim, Dae-Young;Lee, Hong-Sung;Chun, Byung-Sik;Jung, Jong-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.57-70
    • /
    • 2009
  • Considerable advance has been made on research on effect of steel pipe Umbrella Arch Method (UAM) and mechanical reinforcement mechanism through numerical analyses and experiments. Due to long analysis time of three-dimensional analysis and its complexity, un-quantitative two-dimensional analysis is dominantly used in the design and application, where equivalent material properties of UAM reinforced area and ground are used, For this reason, development of reasonable, theoretical, quantitative and easy to use design and analysis method is required. In this study, both field UAM tests and laboratory tests were performed in the residual soil to highly weathered rock; field tests to observe the range of reinforcement, and laboratory tests to investigate the change of material properties between prior to and after UAM reinforcement. It has been observed that the increase in material property of neighboring ground is negligible, and that only stiffness of steel pipe and cement column formed inside the steel pipe and the gap between steel pipe and borehole contributes to ground reinforcement. Based on these results and concept of Convergence Confinement Method (CCM), two dimensional axisymmetric analyses have been performed to obtain the longitudinal displacement profile (LDP) corresponding to arching effect of tunnel face, UAM effect and effect of supports. In addition, modified load distribution method in two dimensional plane-strain analysis has been suggested, in which effect of UAM is transformed to internal pressure and modified load distribution ratios are suggested. Comparison between the modified method and conventional method shows that larger displacement occur in the conventional method than that in the modified method although it may be different depending on ground condition, depth and size of tunnel, types of steel pipe and initial stress state. Consequently, it can be concluded that the effect of UAM as a beam in a longitudinal direction is not considered properly in the conventional method.

Effects of the Precipitation of Carbides and Nitrides on the Textures in Extra Low Carbon Steel Sheets containing B, Nb and Ti(l) (B,Nb 및 Ti 를 함유한 극저탄소강에서 탄화물 및 질화물의 석출이 집합조직에 미치는 영향(I)-집합조직과 기계적 성질-)

  • Lee, Jong-Mu;Yoon, Kuk-Hoon;Lee, Do-Hyeong
    • Korean Journal of Materials Research
    • /
    • v.3 no.1
    • /
    • pp.43-49
    • /
    • 1993
  • Excellent deep drawability and strain aging rsistance are obtained by the addition of alloying elements such as Ti and Nb which can form carbide and nitride easily into Al killed extra low carbon steel. Recrystallization textures and mechanical properties of the three different extra low carbon steels with B containing Nb only, Ti only, and both Nb and Ti, respectively, along with have been compared. Inverse pole figure shows that (100) and (111) texture intensities of Nb containing steel changed a lot during the annealing treatment and the degree of texture-structural change in the steel containing both Nb and Ti is about the same as that in the Ti-containing 5teel. After annealing the pole figure shows that the {Ill} < 110 > and {112} < 110> textures are the strongest in the cold rolled state and the annealed state, respectively. However, there is little difference in texture structure among the three kinds of steels. There is a tendency that the steel containing both Nb and Ti the grain size of which is the smallest is the highest in hardness. Nb-containing steel is the next and Ti -containing steel is the last in hardness.

  • PDF

Estimate of the Bearing Capacity on Subbase and Subgrade with Dynamic Plate Bearing Test (동평판재하시험을 이용한 도로하부 재료의 지지력 평가)

  • Youn, Ilro;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.8
    • /
    • pp.53-60
    • /
    • 2013
  • The compaction control method of national road substructure is using field density test to determine the relative compaction and plate bearing test to check the load bearing capacity. However, these two tests digitize a construction site manager's judgment based on his experience, so mechanical basis is weak. Resilient modulus method, which is recently being used to resolve such problem, is evaluated as a rational design method of pavement structure that can rationally reflect the stress-strain state of pavement materials that is caused by the condition of load repetition of vehicle load. However, the method of measuring the resilient modulus is difficult and lengthy, and it has many problems. To replace it, light falling weight test is recently being proposed as a simple test method. Therefore, this research uses dynamic plate loading test, which quickly and simply measures the elastic modulus of the subgrade and sub-base construction and site of maintenance, to judge the possibility of compaction control of the stratum under the road, and it proposes relation formula by analyzing the result of static load test.

Investigation on Applicability of 2400 MPa Strand for Posttensioned Prestressed Concrete Girders (포스트텐션 PSC 거더에 대한 2400 MPa급 강연선의 적용성 분석)

  • Park, Ho;Cho, Jae-Yeol;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.727-735
    • /
    • 2012
  • Recently, a high-strength strand of 2400 MPa was developed using domestic technologies. In 2011, KS D 7002 was revised to cover the newly developed high-strength strands to support their practical usage. Presently, however, discussions and evaluations are not sufficient on the mechanical properties of the strands and their performance in structural members. Also, there were no detailed reviews on the need to revise the current design code for practical use of the high-strength strands. In this study, flexural behavior of a member with the high-strength strands was estimated through sectional analysis and a review and comparison of the domestic and foreign design codes were conducted considering the analysis results. Also, the need for the revision of the design code was discussed. Such discussion especially focused on the estimation of the stress in strand, which related with various issues such as determination methods for yield point of strands, time-dependent loss of prestressing force, estimation of stress in strand at member failure, and net strain limit for ductile failure of member. The discussion revealed that some parts in the design code need a revision and the further studies are required.

The Prediction of tong-Term Creep Behavior of Recycled PET Polymer Concrete (단기 크리프 실험을 이용한 PET 재활용 폴리머콘크리트의 장기 크리프거동 예측)

  • Jo Byung-Wan;Tae Ghi-Ho;Kim Chul-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.521-528
    • /
    • 2004
  • In general, polymer concrete has more excellent mechanical properties and durability than Portland cement concrete, but very sensitive to heat and has large deformations. In this study, the long-term creep behaviors was predicted by the short-term creep test, and then the characteristic of creep of recycled-PET polymer concrete was defined by material and experimental variables. The error in the predicted long-term creep values is less than 5 percent for all polymer concrete systems. The filler carry out an important role to restrict the creep strains of recycled PET Polymer concrete. The creep strain and specific on using the $CaCO_3$ were less than using fly-ash. The creep increases with an increase in the applied stress, but not proportional the rate of stress increase ratio. The creep behavior of polymer concrete using recycled polyester resin is not a linear viscoelastic behavior.

Properties and Prediction Model for Ultra High Performance Fiber Reinforced Concrete (UHPFRC): (I) Evaluation of Setting and Shrinkage Characteristics and Tensile Behavior (초고성능 섬유보강 콘크리트(UHPFRC)의 재료 특성 및 예측모델: (I) 응결 및 수축 특성과 인장거동 평가)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.307-315
    • /
    • 2012
  • Recently, ultra high performance fiber reinforced concrete (UHPFRC) having over 180 MPa compressive strength and 10 MPa tensile strength has been developed in Korea. However, UHPFRC represents different material properties with normal concrete (NC) and conventional high performance concrete (HPC) such as a high early age autogenous shrinkage and a rapid dry on the surface, because it has a low water-binder ratio and high fineness admixtures without coarse aggregate. In this study, therefore, to propose suitable experimental methods and regulations, and to evaluate mechanical properties at a very early age for UHPFRC, setting, shrinkage and tensile tests were performed. From the setting test results, paraffin oil was an appropriate material to prevent drying effect on the surface, because if paraffin oil is applied on the surface, it can efficiently prevent the drying effect and does not disturb or catalyze the hydration of cement. From the ring-test results, it was defined that the shrinkage stress is generated at the time when the graph tendency of temperature and strain of inner steel ring is changed. By comparing with setting test result, the shrinkage stress was firstly occurred as the penetration resistance of 1.5 MPa was obtained, and it was about 0.6 and 2.1 hour faster than those of initial and final sets. So, the starting time of autogenous shrinkage measurement (time-zero) of UHPFRC was determined when the penetration resistance of 1.5 MPa was obtained. Finally, the tensile strength and elastic modulus of UHPFRC were measured from near initial setting time by using a very early age tensile test apparatus, and the prediction models for tensile strength and elastic modulus were proposed.

Effects of Solvent on the Fabrication of Poly(L-lactide) Scaffold Membranes through Phase Inversion (상전이를 통한 Poly(L-lactide) 스캐폴드 막의 제조에서의 용매의 효과)

  • Cho, Yu Song;Kim, Young Kyoung;Koo, Ja-Kyung;Park, Jong Soon
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.113-122
    • /
    • 2014
  • Porous poly(L-lactic acid)(PLLA) scaffold membranes were prepared via. phase separation process. Chloroform, dichloromethane and 1,4-dioxane were used as solvent and, ethyl alcohol was used as non-solvent. Morphologies, mechanical properties and mass transfer characteristics of the scaffold membranes were investigated through SEM, stress-strain test and glucose diffusion test. The scaffold membranes obtained from the casting solutions with chloroform and with dichloromethane showed similar morphologies. They showed sponge-like porous structure with the pore size in the range of $3-10{\mu}m$ and, their porosities were in 50-80% range. Using 1,4-dioxane as solvent, nano-fibrous scaffold membranes with porosities over 80% were fabricated. When the polymer content in the solution with 1,4-dioxane was lowered to 4%, highly porous, macroporous and nano-fibrous scaffold membranes were obtained. The size of the macropore was tens of the microns and the porosity was around 90%. These results indicate that the solvent has significant effect on the scaffold membrane structure and, that scaffold membranes with various structures can be fabricated through phase separation method by choosing solvent and by controlling polymer concentration in the casting solution.

KINETIC STUDIES OF LACTIC ACID FERMENTATION(PART 2) INFLUENCE OF TEMPERATURE ON FERMENTATION (유산균 발효에 관한 동력학적 연구(제2보) 발효에 미치는 온도의 영향)

  • LEE Keun-Tai;LEE Myeong-Sook;HAN Bong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.3
    • /
    • pp.161-166
    • /
    • 1979
  • To know the influence of temperature on the fermentation process, a strain of Lactobacillus bulgarius was experimentally cultured three different temperature conditions of $39^{\circ}C,\;42^{\circ}C\;and\;45^{\circ}C$, pH 5.8 and mechanical agitation of 500rpm. During 20 hour's fermentation, the microbial growth attained the maximum concentration under the conditions mentioned above. However, the culturing conditions resulted different outcomes in terms of maximum concentration of the microbes and the residual concentration of substrate. Among the three temperature conditions, the fermentation at $45^{\circ}C$ was most effective and the maximum specific growth temperature conditions, the fermentation at $45^{\circ}C$ was most effective and the maximum specific growth rate was 0.58/hr. Activation energy deduced from the Arrhenius equation was 9,220cal/mole and entropy was $-33.74\;cal/^{\circ}K$ mole. Activation enthalpy was 9,845 cal/mole and free energy was 19,800 cal/mole.

  • PDF