• 제목/요약/키워드: mechanical properties degradation

검색결과 539건 처리시간 0.025초

Processing and mechanical property evaluation of maize fiber reinforced green composites

  • Dauda, Mohammed;Yoshiba, Masayuki;Miura, Kazuhiro;Takahashi, Satoru
    • Advanced Composite Materials
    • /
    • 제16권4호
    • /
    • pp.335-347
    • /
    • 2007
  • Green composites composed of long maize fibers and poly $\varepsilon$-caprolactone (PCL) biodegradable polyester matrix were manufactured by the thermo-mechanical processing termed as 'Sequential Molding and Forming Process' that was developed previously by the authors' research group. A variety of processing parameters such as fiber area fraction, molding temperature and forming pressure were systematically controlled and their influence on the tensile properties was investigated. It was revealed that both tensile strength and elastic modulus of the composites increase steadily depending on the increase in fiber area fraction, suggesting a general conformity to the rule of mixtures (ROM), particularly up to 55% fiber area fraction. The improvement in tensile properties was found to be closely related to the good interfacial adhesion between the fiber and polymer matrix, and was observed to be more pronounced under the optimum processing condition of $130^{\circ}C$ molding temperature and 10 MPa forming pressure. However, processing out of the optimum condition results in a deterioration in properties, mostly fiber and/or matrix degradation together with their interfacial defect as a consequence of the thermal or mechanical damages. On the basis of microstructural observation, the cause of strength degradation and its countermeasure to provide a feasible composite design are discussed in relation to the optimized process conditions.

전기화학적 방법에 의한 내열강의 열화도측정 제2보 : 열화도측정치에 미치는 측정조건들의 영향과 기계적성질 변화에 대해서 (Degradation Degree Evaluation of Heat Resisting Steel by Electrochemical Technique Part 2 : Effect of Testing Conditions on Evaluation Value of Degradation Degree and Changes of Mechaical Properties)

  • 정희돈;권영각;장래웅
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.300-312
    • /
    • 1993
  • The material deterioration of service-exposed boiler tube steels in fossil power plant was evaluated by using the electrochemical technique namely, modified electrochemical potentiokinetic reactivation(EPR). It was focused that the passivation of Mo$_{6}$C carbide which governs the mechanical properties of Mo alloyed steels did not occur even in the passivity region of steel in sodium molybdate solution and the reactivation peak current (Ip) observed as the result of non-passivation indicating the precipitation of Mo$_{6}$C carbides. To obtain the optimal test conditions for the field test by using the specially designed electrochemical cell, the effects of scan rate, the surface roughness and the pH of electrolyte on Ip value were also investigated. Furthermore, the change of mechanical properties occurred during the long time exposure at high temperature was evlauated quantitatively by small punch(SP) tests and micro hardness test taking account of the metallurgical changes. It is known that reactivation peak current (Ip) has a good relationship with Larson-Miller Parameter(LMP) which represents the information about material deterioration occurred at high temperature environment. In addition it was possible to estimate the ductile-brittle transition temperature (DBTT) by means of the SP test. The Sp test could be, therefore, suggested as a reliable test method for evaluating the material degradation of boiler tube steels. From the good correaltion between the SP DBTT and Ip values shown in this study, it was knows that the change of mechanical properties could be evaluated non-destructively by measurring only Ip values.ues.

The Effect of Moisture Absorption and Gel-coating Process on the Mechanical Properties of the Basalt Fiber Reinforced Composite

  • Kim, Yun-Hae;Park, Jun-Mu;Yoon, Sung-Won;Lee, Jin-Woo;Jung, Min-Kyo;Murakami, Ri-Ichi
    • International Journal of Ocean System Engineering
    • /
    • 제1권3호
    • /
    • pp.148-154
    • /
    • 2011
  • Generally, strength degradation is caused by the absorption of moisture in composites. For this reason, a fracture is generated in the composites and traces of glass fiber degrade human health and physical damage is generated. Therefore, in this research, we studied the mechanical properties change of composites by moistureabsorption. The composites were manufactured with and without the Gel-coating process and were immersed in a moisture absorption device at $80^{\circ}C$ for more than 100 days. The mechanical properties of the moistureabsorption composites and the composites which dry after moisture-absorption were compared. The mechanical properties degradation of basalt fiber composites according to the result of the measurement of moistureabsorption was smaller than that of glass fiber composites by about 20%. In addition, the coefficient of moisture absorption was lower for the case of Gel-coating processing than the composites without the Gel-coating process by about 2% and it was deduced that Gel-coating did not have a significant effect on the mechanical properties.

개량형 9Cr-1Mo 강의 열화도 평가를 위한 기계적 성질 및 초음파 특성 분석 (Analysis of Mechanical and Ultrasonic Properties for the Evaluation of Material Degradation in Modified 9Cr-1Mo Steel)

  • 현양기;원순호;이상훈;손영호;이재훈;김인배
    • 열처리공학회지
    • /
    • 제23권4호
    • /
    • pp.198-204
    • /
    • 2010
  • Modified 9Cr-1Mo steels possess excellent high-temperature mechanical properties and are widely used in energy conversion industries. However, in-service materials degradation, such as softening, carbide-induced embrittlement, temper embrittlement, etc., can take place during long-term operation. Evolution of microstructure due to service exposure to high temperature has a strong effect on the performance of heat resistant steels. In case of modified 9Cr-1Mo steels, precipitation of $Fe_2Mo$-type laves phases and coarsening of $M_{23}C_6$-type carbides are the primary cause of degradation of mechanical properties such as toughness, hardness, tensile strength and creep resistance. This study was aimed at finding reliable parameter for assessing the integrity of modified 9Cr-1Mo steels. Characteristic parameters were attained between mechanical and ultrasonic properties.

압입법을 이용한 재료 열화의 평가에 관한 연구 (A Study on the Evaluation of Material Degradation using Ball Indentation Method)

  • 김정표;석창성;안하늘
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.171-176
    • /
    • 2000
  • As huge energy transfer systems like a nuclear power plant, steam power plant and petrochemical plant are operated for a long time, mechanical properties are changed by degradation. The life time of the systems can be affected by the mechanical properties. BI(Ball Indentation) test has a potential to replace conventional fracture tests like a uniaxial tensile test, fracture toughness test, hardness test and so on. In this paper, we would like to present the aging evaluation technique by the BI method. The four classes of the thermally aged 1Cr-1Mo-0.25V specimens were prepared using an artificially accelerated aging method. Tensile tests, fracture toughness tests, hardness tests and BI tests were performed. The results of the BI tests were in good agreement with fracture characteristics by a standard fracture test method. The IDE(Indentation Deformation Energy) of a BI technique as a new parameter for evaluating a degradation was suggested and the new IDE parameter clearly depicts the degradation degree.

  • PDF

압출 및 연주 Al 6061 합금의 열간단조 특성 연구 (The Study on the Hot Forging of a Extruded and Continuously Cast Al 6061)

  • 권용남;박정호;이영선;배명한;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.80-83
    • /
    • 2003
  • Generally, forging process has been known to enhance most of the mechanical properties by developing the continuous metal flow across the forged stocks. However, we have found out that forging of Al 6061 did not always give the enhancement of the mechanical properties but the degradation of the original characteristics, especailly for a extruded Al 6061. There are several candidates for the culprit of this unfavorable phenomenon. We have been trying to clear out the cause of the mechanical degradation of the forged a extruded Al 6061. One of the most plausible causes seems to be that the particles containing Mn and/or Cr is coarsened and redistributed preferencially onto grain boundaries due to a repetitive exposure in an elevated temperature condition. On the other hand, a continuously cast Al 6061 did not show any strength degradation after a hot forging under the same process condition with the extruded Al 6061.

  • PDF

Investigation on the electromechanical properties of RCE-DR GdBCO CC tapes under transversely applied load

  • Gorospe, Alking B.;Shin, Hyung-Seop
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권4호
    • /
    • pp.49-52
    • /
    • 2014
  • REBCO coated conductor (CC) tapes with superior mechanical and electromechanical properties are preferable in applications such as superconducting coils and magnets. The CC tapes should withstand factors that can affect their performance during fabrication and operation of its applications. In coil applications, CC tapes experience different mechanical constraints such as tensile or compressive stresses. Recently, the critical current ($I_c$) degradation of CC tapes used in coil applications due to delamination were already reported. Thermal cycling, coefficient of thermal expansion mismatch among constituent layers, screening current, etc. can induce excessive transverse tensile stresses that might lead to the degradation of $I_c$ in the CC tapes. Also, CC tapes might be subjected to very high magnetic fields that induce strong Lorentz force which possibly affects its performance in coil applications. Hence, investigation on the delamination mechanism of the CC tapes is very important in coiling, cooling, operation and design of prospect applications. In this study, the electromechanical properties of REBCO CC tapes fabricated by reactive co-evaporation by deposition and reaction (RCE-DR) under transversely applied loading were investigated. Delamination strength of the CC tape was determined using the anvil test. The $I_c$ degraded earlier under transverse tensile stress as compared to that under compressive one.

방사선 열화에 따른 Polychloroprene의 산화특성 (Oxidation Properties of Polychloroprene by Irradiation Degradation)

  • 김기엽;강현구;류부형;이청;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.456-459
    • /
    • 2003
  • Polychloroprene(CR) is well known as elastomer commonly utilized in the electrical. It is mainly used for cable jacket and insulator. The irradiation degradation property of polymer materials is very important to prevent unexpected accidents in the Nuclear Power Plant(NPP). The irradiation degradation is caused by the oxidation of polymer materials, and this oxidation is occurred by oxygen radical produced from air. In this study, we evaluate the oxidation properties of CR. CR is irradiated for 200, 400, 600, 1000 kGy radiation dose. The oxidation properties of irradiated CR are investigated by differential scanning calorimetry, dynamic mechanical properties and FT-IR/ATR. Glass transition temperature(Tg), decomposition onset temperature(DOT), loss modulus and mechanical tan $\delta$ values are compared together. The irradiation limit of CR in the NPP, is known for 500 kGy, and this is exactly matched with investigated results.

  • PDF

Evaluation of Material Degradation of 1Cr-1Mo-0.25V steel using Ball Indentation Method

  • Seok, Chang-Sung;Kim, Jeong-Pyo;Koo, Jae-Mean
    • Journal of Mechanical Science and Technology
    • /
    • 제18권10호
    • /
    • pp.1730-1737
    • /
    • 2004
  • The BI (Ball Indentation) method has the potential to assess the mechanical properties and to replace conventional fracture tests. In this study, the effect of aging on mechanical behavior of 1Cr-1Mo-0.25V steels procured by isothermal aging heat-treatment at four different aging times in the range of 0~1820 hours at 630$^{\circ}C$, were investigated using BI system.

Effect of Elevated Temperature on Mechanical Properties of Limestone, Quartzite and Granite Concrete

  • Tufail, Muhammad;Shahzada, Khan;Gencturk, Bora;Wei, Jianqiang
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권1호
    • /
    • pp.17-28
    • /
    • 2017
  • Although concrete is a noncombustible material, high temperatures such as those experienced during a fire have a negative effect on the mechanical properties. This paper studies the effect of elevated temperatures on the mechanical properties of limestone, quartzite and granite concrete. Samples from three different concrete mixes with limestone, quartzite and granite coarse aggregates were prepared. The test samples were subjected to temperatures ranging from 25 to $650^{\circ}C$ for a duration of 2 h. Mechanical properties of concrete including the compressive and tensile strength, modulus of elasticity, and ultimate strain in compression were obtained. Effects of temperature on resistance to degradation, thermal expansion and phase compositions of the aggregates were investigated. The results indicated that the mechanical properties of concrete are largely affected from elevated temperatures and the type of coarse aggregate used. The compressive and split tensile strength, and modulus of elasticity decreased with increasing temperature, while the ultimate strain in compression increased. Concrete made of granite coarse aggregate showed higher mechanical properties at all temperatures, followed by quartzite and limestone concretes. In addition to decomposition of cement paste, the imparity in thermal expansion behavior between cement paste and aggregates, and degradation and phase decomposition (and/or transition) of aggregates under high temperature were considered as main factors impacting the mechanical properties of concrete. The novelty of this research stems from the fact that three different aggregate types are comparatively evaluated, mechanisms are systemically analyzed, and empirical relationships are established to predict the residual compressive and tensile strength, elastic modulus, and ultimate compressive strain for concretes subjected to high temperatures.