• 제목/요약/키워드: mechanical joint

검색결과 2,026건 처리시간 0.034초

기계 조인트의 전단 컨택 특성 측정 (Measurement of Shear Contact Characteristics on Mechanical Joints)

  • 이철희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1350-1353
    • /
    • 2007
  • An experimental method based on contact resonance is developed to extract the contact parameters of mechanical joints under various clamped conditions. Mechanical joint parameters of shear contact stiffness and damping were extracted for different physical joint parameters such as surface finish of the mating surfaces, the presence of lubrication, the effect of the clamping pressure, and shear load. It was found that the shear contact stiffness values decreased with increasing clamping load and increased with increasing shear loading. Contact damping ratio values were almost constant with clamping load, but decreased with increasing shear load. Moreover, rough surfaces exhibited the highest shear stiffness and contact damping compared to smooth surfaces.

  • PDF

유니버설 조인트 베어링용 시일의 성능평가를 위한 유한요소해석 (Finite Element Analysis for Performance Evaluation of the Seal in a Universal Joint Bearing)

  • 김태완;문석만;구영필;조용주
    • 한국정밀공학회지
    • /
    • 제18권9호
    • /
    • pp.140-146
    • /
    • 2001
  • Seals in a universal joint bearing are important components reinforcing lubrication performance by holding lubricant and preventing infiltration of dust, moisture, etc.. There is a great difference in seal performance according to seal shape and bonding position. Therefore, in this study, as for both the lip type seal and the O-ring type seal, FE analysis is conducted using Mooned-Rivlin Model. The results show that O-ring type seal does not have any effect of misalignment angle compared with lib type seal, which is more profitable.

  • PDF

축약된 유한요소 모델과 실험적 모우드 해석을 이용한 기계구조물의 연결부 동특성 규명 (Identification of joint dynamics of mechanical structures using condensed F.E.M. model and experimental modal analysis)

  • 최병욱;박병호;김광준
    • 대한기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.426-439
    • /
    • 1988
  • 본 연구에서는 유한요소모델과 실험적 모우드 해석 방법을 조합하여 완전한 모우드를 측정하지 못한 상태에서도 구조물 연결부의 강성계수와 감쇠계수를 구하는 방법론을 검토하고 실제 계에 적용하여 보고자 한다.

Development of Anthropomorphic Robot Hand SKK Robot Hand I

  • Taehun Kang;Park, Hyoukryeol;Kim, Moonsang
    • Journal of Mechanical Science and Technology
    • /
    • 제17권2호
    • /
    • pp.230-238
    • /
    • 2003
  • In this paper, a three-fingered anthropomorphic robot hand, called SKK Robot Hand 1, is presented. By employing a two-DOF joint mechanism, called Double Active Universal Joint (abbreviated as DAUJ from now on) as its metacarpal joint, the hand makes it possible to mimic humanlike motions. We begin with addressing the motivation of the design and mention how the anthropomorphic feature of a human is realized in the design of SKK Hand I Also, the mechanism of the hand is explained in detail, and advantages in its modular design are discussed. The proposed hand is developed for use as a testbed for dextrous manipulation. It is expected to resolve the increasing demand for robotic applications in unstructured environments. We describe its hardware construction as well as the controller structure including the preliminary results of experiments.

CMP 프로세스의 통계적인 다규모 모델링 연구 (A Statistical Study of CMP Process in Various Scales)

  • 석종원
    • 대한기계학회논문집A
    • /
    • 제27권12호
    • /
    • pp.2110-2117
    • /
    • 2003
  • A physics-based material removal model in various scales is described and a feature scale simulation for a chemical mechanical polishing (CMP) process is performed in this work. Three different scales are considered in this model, i.e., abrasive particle scale, asperity scale and wafer scale. The abrasive particle and the asperity scales are combined together and then homogenized to result in force balance conditions to be satisfied in the wafer scale using an extended Greenwood-Williamson and Whitehouse-Archard statistical model that takes into consideration the joint distribution of asperity heights and asperity tip radii. The final computation is made to evaluate the material removal rate in wafer scale and a computer simulation is performed for detailed surface profile variations on a representative feature. The results show the dependence of the material removal rate on the joint distribution, applied external pressure, relative velocity, and other operating conditions and design parameters.

동시경화 강철-복합재료 원형 단일 겹치기 조인트의 최적설계 (Optimum Design of Co-cured Steel-Composite Tubular Single Lap Joints)

  • 조덕현;이대길
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1203-1214
    • /
    • 2000
  • In this paper, a failure model for co-cured steel-composite tubular single lap joints has been proposed incorporating the nonlinear mechanical behavior of steel adherends and different failure mode s such as steel adherend failure and composite adherend failure. The characteristics of the co-cured steel-composite tubular single lap joint were investigated with respect to the test temperature, the stacking sequence of composite adherend, the thickness ratio of steel adherend to composite adherend, and the scarf ratio of steel adherend. Thus, the optimum design method for the co-cured steel-composite tubular single lap joint was suggested.

주파수응답함수의 변화를 이용한 기계적 결합부의 동특성 파라미터 해석 (Dynamic Analysis of Mechanical Joint Parameters Using the Variation of Frequency Response Function)

  • 강성구;지태한;유원희;박영필
    • 소음진동
    • /
    • 제4권2호
    • /
    • pp.155-161
    • /
    • 1994
  • The dynamic behavior of a complex mechanical structure can be identified by dividing the structure into a series of smaller structure, called sub- structure and by studying the dynamic characteristics of these components. Generally, the dynamic characteristics of mechanical structure are strongly affected by the properties of joint parameters. In this paper, to identify the dynamic characteristics of mechanical structure, and experimental identification method in which directrly measured frequency response function(FRF) is used is considered. The method does not use the procedure of complex matrix calculation but use that of real matrix calculation. To confirm this method, computer simulation is performed by using frequency response function mixed with noise, and the experimental study is performed about the simple structure. The dynamic characteristics of joint parameters and identified more accurately than in using the prcedure of complex matrix calculation.

  • PDF

A Study on a Robust Motion Control of Flexible Manipulator with Five Joint for Untact Working in Filed Work-site

  • Kim, Hee-Jin;Kim, Seong-Il;Jang, Gi-Won;Han, Sung-Hyun
    • 한국산업융합학회 논문집
    • /
    • 제25권2_1호
    • /
    • pp.161-168
    • /
    • 2022
  • This study proposed a new approach to impliment a robusut control of comsumer-friendly flexible manipulator with five joint for untact working in filed work-site. The output redefinition approach was used to overcome the non minimum phase characteristic of the system. The new output is defined so that the zero dynamics related to this output are stable. The control strategy is based on an computed torque method which is applicable to a class of time-invariamt phase linear systems whose uncertainties appear in output loop stable. The controller is composed of a stabilizing joint controller and an output redefinition tracking controller. Experimental results are also presented to verify the effectiveness of the proposed control scheme.

The influence of disc wear on the behavior of the temporomandibular joint: a finite element analysis in a specific case

  • Duarte, Ricardo J.;Ramos, Antonio;Mesnard, Michel
    • Advances in biomechanics and applications
    • /
    • 제1권3호
    • /
    • pp.159-167
    • /
    • 2014
  • The aim of this study was to evaluate the influence of disc thickness on the normal behavior of the temporomandibular joint. Based on a specific patient case, CT scan images showing accentuated wear in the right disc were reconstructed and the geometrical and finite element model of the temporomandibular joint structures (cranium, mandible, articular cartilages and articular discs) was developed. The loads applied in this study were referent to the five most relevant muscular forces acting on the temporomandibular joint during daily tasks such as talking or eating. We observed that the left side structures of the temporomandibular joint (cranium, mandible and articular disc) were the most affected as a consequence of the wear on the opposite articular disc (right side). From these results, it was possible to evaluate the differences in the two sides of the joint and understand how a damaged articular disc influences the behavior of this joint and the possible consequences that can arise without treatment.

팽창성 암석절리의 개별요소 모델링에 관한 연구 (A Study on Distinct Element Modelling of Dilatant Rock Joints)

  • 장석부;문현구
    • 터널과지하공간
    • /
    • 제5권1호
    • /
    • pp.1-10
    • /
    • 1995
  • The behavior of a jointed rock mass depends mainly on the geometrical and mechanical properties of joints. The failure mode of a rock mass and kinematics of rock blocks are governed by the orientation, spacing, and persistence of joints. The mechanical properties such as dilation angle, shear strength, maximum closure, strength of asperities and friction coeffiient play important roles on the stability and deformation of the rock mass. The normal and shear behaviour of a joint are coupled due to dilation, and the joint deformation depends also on the boundary conditions such as stiffness conditons. In this paper, the joint constitutive law including the dilatant behaviour of a joint is numerically modelled using the edge-to-edge contact logic in distinct element method. Also, presented is the method to quantify the input parameters used in the joint law. The results from uniaxial compression and direct shear tests using the numeical model of the single joint were compared to the analytic results from them. The boundary effect on the behaviour of a joint is verified by comparing the results of direct shear test under constant stress boundary condition with those under constant stiffness boundary condition. The numerical model developed is applied to a complex jointed rock mass to examine its performance and to evaluate the effect of joint dilation on tunnel stability.

  • PDF