• Title/Summary/Keyword: mechanical interfacial properties

Search Result 488, Processing Time 0.03 seconds

Zn-Ion Coated Structural $SiO_2$ Filled LDPE: Effects of Epoxy Resin Encapsulation

  • Reddy C. S.;Das C. K.;Agarwal K.;Mathur G N.
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.223-228
    • /
    • 2005
  • In the present work, a low-density polyethylene (LDPE) composite, filled with Zn-ion coated structural silica encapsulated with the diglycidyl ether of bisphenol-A (DGEBA), was synthesized using the conventional melt-blending technique in a sigma internal mixer. The catalytic activity of the Zn-ions (originating from the structural silica) towards the oxirane group (diglycidyl ether of bisphenol-A (DGEBA): encapsulating agent) was assessed by infrared spectroscopy. Two composites, each with a filler content of $2.5 wt\%$ were developed. The first one was obtained by melt blending the Zn-ion coated structural silica with LDPE in a co-rotating sigma internal mixer. The second one was obtained by melt blending the same LDPE, but with DGEBA encapsulated Zn-ion coated structural silica. Epoxy resin encapsulation of the Zn-ion coated structural silica resulted in its having good interfacial adhesion and a homogeneous dispersion in the polymer matrix. Furthermore, the encapsulation of epoxy resin over the Zn-ion coated structural silica showed improvements in both the mechanical and thermal properties, viz. a $33\%$ increase in the elastic modulus and a rise in the onset degradation temperature from 355 to $371^{\circ}C$, in comparison to the Zn-ion coated structural silica.

Surface Modification Effect and Mechanical Property of para-Aramid Fiber by Low-temperature Plasma Treatment (저온 플라즈마 처리를 이용한 파라 아라미드 섬유의 표면 개질 효과 및 역학적 특성)

  • Park, Sung-Min;Kwon, Il-Jun;Kim, Myung-Soon;Kim, Sam-Soo;Choi, Jae-Young;Yeum, Jeong-Hyun
    • Textile Coloration and Finishing
    • /
    • v.24 no.2
    • /
    • pp.131-137
    • /
    • 2012
  • para-Aramid fibers were treated by low-temperature plasma to improve the adhesion. The surface of para-aramid fibers were treated with gaseous plasma of several discharge power and treatment time in oxygen gas at 1Torr pressure. The treated fibers at low-temperature plasma were taken oxygen-containing functional groups and micro-crator on the surface. The modified fibers were measured by dynamic contact angle analyzer and XPS(X-ray photoelectron spectroscopy). The Interfacial adhesion properties of aramid fabric and polyurethane resin were determined by T-peel test. The surface of aramid fibers were observed by FE-SEM photographs. It was found that surface modification and chemical component ratio of the aramid fibers were improved wettability and adhesion characterization.

Preparation of Epoxidized Soft Terpolymers and Their Reactive Compatibilizing Effects on PP/EVOH Blends

  • Kim, Jung Soo;Jeon, Dong Gyu;Jang, Ji Hoon;Kim, Jin Hoon;Kim, Ki Bum;Yang, Hong Joo;Park, Jun Sung;Lee, Youn Suk;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.50 no.3
    • /
    • pp.189-195
    • /
    • 2015
  • In this study, we prepared epoxidized poly ethylene-ter-1-decene-ter-divinylbenzene (Epo-PEHV) as a reactive compatibilizer to prevent phase separation phenomenon which occurs upon blending polypropylene (PP) and ethylene-vinyl alcohol copolymer (EVOH). Firstly, PEHV was prepared under high catalyst activity according to content of catalyst and cocatalyst. After then, we modified vinyl group of the terpolymer with epoxy group. We observed that the terpolymer was successfully epoxidized by 1H-NMR and FT-IR analysis. The Epo-PEHV was added by 2, 5, 10% in PP/EVOH blends. The morphologies and mechanical properties of PP/Epo-PEHV/EVOH blends were analyzed by SEM and UTM, respectively. Epo-PEHV enhanced the interfacial adhesion of PP and EVOH blends.

A meso-scale approach to modeling thermal cracking of concrete induced by water-cooling pipes

  • Zhang, Chao;Zhou, Wei;Ma, Gang;Hu, Chao;Li, Shaolin
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.485-501
    • /
    • 2015
  • Cooling by the flow of water through an embedded cooling pipe has become a common and effective artificial thermal control measure for massive concrete structures. However, an extreme thermal gradient induces significant thermal stress, resulting in thermal cracking. Using a mesoscopic finite-element (FE) mesh, three-phase composites of concrete namely aggregate, mortar matrix and interfacial transition zone (ITZ) are modeled. An equivalent probabilistic model is presented for failure study of concrete by assuming that the material properties conform to the Weibull distribution law. Meanwhile, the correlation coefficient introduced by the statistical method is incorporated into the Weibull distribution formula. Subsequently, a series of numerical analyses are used for investigating the influence of the correlation coefficient on tensile strength and the failure process of concrete based on the equivalent probabilistic model. Finally, as an engineering application, damage and failure behavior of concrete cracks induced by a water-cooling pipe are analyzed in-depth by the presented model. Results show that the random distribution of concrete mechanical parameters and the temperature gradient near water-cooling pipe have a significant influence on the pattern and failure progress of temperature-induced micro-cracking in concrete.

A Study on the Interfacial Phenomena As Heat treatment of SiCw/Al Composites (SiCw/Al 복합재료의 열처리에 따른 계면 현상에 관한 연구)

  • Oh, Hyeok-Jin;Bang, Myung-Sung;Lee, Eui-Kil;Nam, Seoung-Eui
    • Journal of Korea Foundry Society
    • /
    • v.12 no.6
    • /
    • pp.464-470
    • /
    • 1992
  • In the present study, the effects of Al/SiC interface reaction and the formation of $Al_4C_3$ compounds on the mechanical properties of the Al/SiC composites prepared by squeeze casting were investigated. After squeeze casting, the size of dendrites in Al without whiskers were larger than those with whiskers. The hardness of composite materials (about 72 Hv) was found to be approximating 40% higher than that of matrix metal (29Hv), which gradually increases which heat treatment Time showing maximum hardness at 12hr. The observation of increasing number of compounds in 12hrs heat treatment suggests that these compounds are responsible for the increase of hardness. By X-ray diffraction studies, those compounds were identified as $Al_4C_3$, (Al, Si). And intensity of Si peak increased. The tensile strengh of composite materials was gradually decresed by heat tretment, which was in contrast to the behavior of hardeness. With incresing heat tretment time, the fracture mode of composite materials was changed from large dimples and pull-out form of fiber to the fracture and rupture foum of fiber.

  • PDF

Investigation of Cement Matrix Compositions of Nanosilica Blended Concrete

  • Kim, Jung Joong;Moon, Jiho;Youm, Kwang-Soo;Lee, Hak-Eun;Lim, Nam-Hyoung
    • International Journal of Railway
    • /
    • v.7 no.3
    • /
    • pp.85-89
    • /
    • 2014
  • The use of pozzolanic materials in concrete mixtures can enhance the mechanical properties and durability of concrete. By reactions with pozzolanic materials and calcium hydroxide in cement matrix, calcium-silicate-hydrate (C-S-H) increases and calcium hydroxide decreases in cement matrix of concrete. Consequently, the volume of solid materials increases. The pozzolanic particles also fill spaces between clinker grains, thereby resulting in a denser cement matrix and interfacial transition zone between cement matrix and aggregates; this lowers the permeability and increases the compressive strength of concrete. Moreover, the total contents of alkali in concrete are reduced by replacing cements with pozzolanic materials; this prevents cracks due to alkali-aggregate reaction (AAR). In this study, nanosilica is incorporated in cement pastes. The differences of microstructural compositions between the hydrated cements with and without nanosilica are examined using nanoindentation, XRDA and $^{29}Si$ MAS NMR. The results can be used for a basic research to enhance durability of concrete slab tracks and concrete railway sleepers.

First-principles investigations on helium behaviors in oxide-dispersion- strengthened nickel alloys with Hf additions

  • Yiren Wang;Fan Jia;Yong Jiang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.895-901
    • /
    • 2023
  • Oxide-dispersion- strengthened nickel alloys with Hf additions are expected to present high temperature mechanical properties and durable helium resistance based on first-principles density functional theory (DFT) calculations. Energetic and charge density evaluations of the helium behaviors were performed in Ni matrix, Y2Hf2O7 oxide and the oxide/matrix interface. With the presence of coherent Y2Hf2O7 in Ni matrix, chances of helium bubbles in Ni can be greatly diminished. The helium atoms shall occupy the interfacial site initially, then diffuse into in the octahedral sites of Y2Hf2O7, and these oxide-captured He atoms prefer to separate individually. Much higher diffusion barrier of He in Y2Hf2O7 than in nickel is related to the strong hybridization between interstitial He-1s and nearest-neighboring O-2p orbitals.

Influence of interfacial adhesive on the failure mechanisms of truss core sandwich panels under in-plane compression

  • Zarei, Mohammad J.;Hatami, Shahabeddin;Gholami, Mohammad
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.519-529
    • /
    • 2022
  • Sandwich structures with the superior mechanical properties such as high stiffness and strength-to-weight ratio, good thermal insulation, and high energy absorption capacity are used today in aerospace, automotive, marine, and civil engineering industries. These structures are composed of moderately stiff, thin face sheets that withstand the majority of transverse and in-plane loads, separated by a thick, lightweight core that resists shear forces. In this research, the finite element technique is used to simulate a sandwich panel with a truss core under axial compressive stress using ABAQUS software. A review of past experimental studies shows that the bondline between the core and face sheets plays a vital role in the critical failure load. Therefore, this modeling analyzes the damage initiation modes and debonding between face sheet and core by cohesive surface contact with traction-separation model. According to the results obtained from the modeling, it can be observed that the adhesive stiffness has a significant influence on the critical failure load of the specimens. To achieve the full strength of the structure as a continuum, a lower limit is obtained for the adhesive stiffness. By providing this limit stiffness between the core and the panel face sheets, sudden failure of the structure can be prevented.

Enhancement of Quick-Charge Performance by Fluoroethylene Carbonate additive from the Mitigation of Electrode Fatigue During Normal C-rate Cycling

  • Tae Hyeon Kim;Sang Hyeong Kim;Sung Su Park;Min Su Kang;Sung Soo Kim;Hyun-seung Kim;Goojin Jeong
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.369-376
    • /
    • 2023
  • The quick-charging performance of SiO electrodes is evaluated with a focus on solid electrolyte interphase (SEI)-reinforcing effects. The study reveals that the incorporation of fluoroethylene carbonate (FEC) into the SiO electrode significantly reduced the electrode fatigue, which is from the the viscoelastic properties of the FEC-derived SEI film. The impact of FEC is attributed to its ability to minimize the mechanical failure of the electrode caused by additional electrolyte decomposition. This beneficial outcome arises from volumetric stain-tolerant characteristics of the FEC-derived SEI film, which limited exposure of the bare SiO surface during 0.5 C-rate cycling. Notably, FEC greatly improves Li deposition during quick-charge cycles following aging at 0.5 C-rate cycling due to its ability to maintain a strong electrical connection between active materials and the current collector, even after extended cycling. Given these findings, we assert that mitigating SEI layer deterioration, which compromises the electrode structure, is vital. Hence, enhancing the interfacial attributes of the SiO electrode becomes crucial for maintaining kinetic efficiency of battery system.

Evaluation of Microscopic Deformation Behaviors of Metal Matrix Composite due to Heat Treatment by means of SFC Test and Acoustic Emission (음향방출과 SFC 시험법에 의한 금속복합재료의 기지재 열처리 효과에 따른 미시적 변형기구 특성 평가)

  • Kang, Moon-Phil;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.381-389
    • /
    • 2000
  • Metal matrix composite(MMCs) have been rapidly becoming one of the strongest candidates for structural materials for high temperature application. It is well recognized that MMCs always experience at least one large cool-down from processing temperature before my significant applied service loading. Due to the large difference in thermal expansion coefficient between the fiber and matrix, large thermal residual stresses generally develop in composites. It was reported from many previous studies that the effects of thermal residual stress on mechanical properties and fracture behavior were much more complex and dramatic than conventional engineering materials. Therefore it is crucial to evaluate the effect of heat treatment which changes the characteristic of distribution of thermal residual stress in MMCs. Single fiber composite(SFC) test based on the balance in a micromechanical model is a quite convenient method to evaluate interfacial shear strength(IFSS) and the failure mode of composite. In this study the effect of heat treatment on IFSS and the microscopic failure mechanism of MMC is investigated by combining acoustic emission(AE) technique with SFC test. The characteristic of AE signal, IFSS and microscopic failure mechanism due to heat treatment condition is discussed.

  • PDF