• 제목/요약/키워드: mechanical interfacial properties

검색결과 488건 처리시간 0.026초

An experimental study on strength of hybrid mortar synthesis with epoxy resin, fly ash and quarry dust under mild condition

  • Sudheer, P.;Muni Reddy, M.G.;Adiseshu, S.
    • Advances in materials Research
    • /
    • 제5권3호
    • /
    • pp.171-179
    • /
    • 2016
  • Fusion and characterization of bisphenol-A diglycidyl ether based thermosetting polymer mortars containing an epoxy resin, Fly ash and Rock sand are presented here for the Experimental study. The specimens have been prepared by means of an innovative process, in mild conditions, of commercial epoxy resin, Fly ash and Rock sand based paste. In this way, thermosetting based hybrid mortars characterized by a different content of normalized Fly ash and Rock sand by a homogeneous dispersion of the resin have been obtained. Once hardened, these new composite materials show improved compressive strength and toughness in respect to both the Fly ash and the Rock sand pastes since the Resin provides a more cohesive microstructure, with a reduced amount of micro cracks. The micro structural characterization allows pointing out the presence of an Interfacial Transition Zone similar to that observed in cement based mortars. A correlation between micro-structural features and mechanical properties of the mortar has also been studied.

Cu-Cr 합금박막의 필 접착력과 소성변형 (Peel Adhesion Strength and Plastic Deformation of Cu-Cr Alloy Thin Films)

  • 이태곤;임준홍;김영호
    • 한국표면공학회지
    • /
    • 제28권4호
    • /
    • pp.219-224
    • /
    • 1995
  • The peel adhesion and plastic deformation in Cu-Cr alloy films, sputter-deposited onto polyimide films, have been studied as a function of Cr content in the film. The adhesion strength has been measured by T-peel test and the amount of plastic deformation in the peeled metal strip was determined qualitatively by XRD technique. Peel adhesion strength has a maximum in the film containing 22-33wt.% Cr and the peel strength of pure Cr film is lower than the maximum. The film having the highest peel strength is deformed most heavily. The effect of Cr content on the peel strength is discussed in terms of the interfacial bond strength and mechanical properties of Cu-Cr alloy film.

  • PDF

Cross-Sectional Transmission Electron Microscopy Sample Preparation of Soldering Joint Using Ultramicrotomy

  • Bae, Jee-Hwan;Kwon, Ye-Na;Yang, Cheol-Woong
    • Applied Microscopy
    • /
    • 제46권3호
    • /
    • pp.167-169
    • /
    • 2016
  • Solder/electroless nickel immersion gold (ENIG) joint sample which is comprised of dissimilar materials with different mechanical properties has limited the level of success in preparing thin samples for transmission electron microscopy (TEM). This short technical note reports the operation parameters for ultramicrotomy of solder joint sample and TEM analysis results. The solder joint sample was successfully sliced to 50~70 nm thick lamellae at slicing speed of 0.8~1.2 mm/s using a boat-type $45^{\circ}$ diamond knife. Ultramicrotomy can be applied as a routine sample preparation technique for TEM analysis of solder joints.

고에너지 방사선이 탄소섬유/에폭시 복합재료의 기계적 물성에 미치는 영향 (Effects of High Energy Radiation on the Mechanical properties of Carbon Fiber/Dpoxy Composites)

  • 박종신
    • 유변학
    • /
    • 제3권1호
    • /
    • pp.22-29
    • /
    • 1991
  • In an effort to predict the long term durability of carbon fiber/epoxy composites in a space environ-ment interlaminar shear strength (ILSS) of the composites was measured as a function of 0.5 MeV electron radiation dosage. For the ILSS measurements a notch method (ASTM D3846) was used with and without side-supports. the supports were used to prevent peeling or bending during the test. The ILSS of both T300/ 5209 longitudinal composite system increases monotonically with radiation when the test is corried out without the support the ILSS of the composites increases initially but then decreases with further radiation. It is also observed that the ILSS of the unsupported case is much lower than that of the supported case. Measurement of epoxy modulus shows that the elastic modulus increases monotonically with radiation. But the breaking strength of the epoxy decreases with radiation. Electron Spectroscopy for Chemcal Analysis shows that the oxygen contents at both the pure epoxy surface and the composite fracture surface increase with radiation dose resulting in the increase of polarity at the interfacial region. This may be a supporting evidence for the increase in the ILSS of the composites.

  • PDF

Ag계 금속필러를 이용한 다이아몬드와 극세선의 브레이징 접합부의 거동연구 (Microstructure and Mechanical Interfacial Properties of Diamond in Ag-based Filler Metal for mini Wire by Vacuum Brazing)

  • 채나현;이장훈;임철호;박성원;이지환;송민석
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2007년 추계학술발표대회 개요집
    • /
    • pp.251-253
    • /
    • 2007
  • 현재 다이아몬드 공구에서 극세선에 브레이징 공정을 이용하여 다이아몬드를 접합하는 기술은 국내외 적으로 전무한 상태이다. 이 연구는 금속 와이어에 다이아몬드를 브레이징을 실시하여 최적의 와이어 브레이징 공정법을 개발 하는데 있다. 다이아몬드와 금속필러메탈 접합 계면에서의 금속성분과 탄화물의 거동을 분석하며, 브레이징에 따른 와이어의 물성 변화를 관찰하였다. 금속필러로는 Ag-Cu-5Ti(wt.%)을 사용하였으며, 와이어는 스테인리스를 이용하였다. 브레이징 공정은 진공 접합 장치를 이용하여 $800{\sim}1000^{\circ}C$에서 유지시간 $5{\sim}30$분로 실시하였다. 브레이징된 다이아몬드는 $900{\sim}950$도, 유지시간 10분 사이에서 각각 건전한 계면과 표면을 얻을 수 있었으며, 계면에서 Ti-rich상과 화합물이 확인되었다. 또한 열처리 따른 와이어의 최적의 건전한 상태를 고찰 하였다. 다이아몬드와 Ag계 브레이징 필러의 계면에서의 미세조직 및 화학반응의 메커니즘은 SEM, EPMA, XRD를 이용하여 분석하였다.

  • PDF

폴리프로필렌/몬모릴로나이트/목분 나노복합체에서의 클레이 박리거동 (Intercalation Behavior of Clay in Polypropylene/Montmorillonite/Wood Nanocomposites)

  • 김진성;이선영;윤호규
    • 한국산업융합학회 논문집
    • /
    • 제13권2호
    • /
    • pp.93-98
    • /
    • 2010
  • Polypropylene / montmorillonite / wood flour nanocomposites are melt-mixed by using a twin screw extruder. The montmorillonite is intercalated by the wood flour and the basal spacing of montmorillonite is increased with increasing the content of wood flour. The exfoliation constantly occurs by adding more than 10 wt.% of maleic anhydride-grafted polypropylene as the compatibilizer, which is used for improving the interfacial adhesion between matrix and filler. Also, the maleic anhydride-grafted polypropylene enhances the mechanical properties of the nanocomposites.

  • PDF

계면 제어를 기반으로 한 고성능 전고체 전지 연구 (Review of interface engineering for high-performance all-solid-state batteries)

  • 황인수;이현정
    • 산업기술연구
    • /
    • 제42권1호
    • /
    • pp.19-27
    • /
    • 2022
  • This review will discuss the effort to understand the interfacial reactions at the anode and cathode sides of all-solid-state batteries. Antiperovskite solid electrolytes have received increasing attention due to their low melting points and anion tunability which allow controlling microstructure and crystallographic structures of this material system. Antiperovskite solid electrolytes pave the way for the understanding relationship between critical current density and mechanical properties of solid electrolytes. Microstructure engineering of cathode materials has been introduced to mitigate the volume change of cathode materials in solid-state batteries. The hollow microstructure coupled with a robust outer oxide layer effectively mitigates both volume change and stress level of cathode materials induced by lithium insertion and extraction, thus improving the structural stability of the cathode and outer oxide layer, which results in stable cycling performance of all-solid-state batteries.

탄소섬유강화 질화규소 세라믹스의 마찰마모 특성 (Sliding Wear Properties of Carbon Fiber Reinforced $Si_3N_4$ Ceramics)

  • 박이현;윤한기;김부안;박원조
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.347-351
    • /
    • 2004
  • [ $Si_3N_4$ ] composites have been extensively studied for engineering ceramics, because it has excellent room and high temperature strength, wear resistance properties, good resistance to oxidation, and good thermal and chemical stability. In the present work, carbon short fiber reinforced $Si_3N_4$ ceramics were fabricated by hot press method in $N_2$ atmosphere at $1800^{\circ}C$ using $Al_2O_3\;and\;Y_2O_3$ as sintering additives. Content of carbon short fiber was $0\%,\;0.1\%\;and\;0.3\%$. The composites were evaluated in terms of density, flexural strength and elastic modulus through the 3-point bending test at room temperature. Also, The wear behavior was determined by the pin on disk wear tester using silicon nitride ball. Experimental density and flexural strength decreased with increasing content of carbon fiber. But specific modulus increased with increasing content of carbon fiber. In addition, friction coefficient and specific wear loss decreased with increasing content of carbon short fiber by reason of interfacial defects between matrix and fiber.

  • PDF

Effect of Ar+ Ion Irradiation of Polymeric Fiber on Interface and Mechanical Properties of Cementitious Composites

  • Seong, Jin-Wook;Lee, Seung-Hun;Kim, Ki-Hwan;Beag, Young-Whoan;Koh, Seok-Keun;Yoon, Ki-Hyun
    • 한국세라믹학회지
    • /
    • 제41권6호
    • /
    • pp.430-434
    • /
    • 2004
  • The values of fracture energy and mechanical flexural strength of Fiber Reinforced Cement (FRC) with polypropylene (PP) fiber modified by Ion Assisted Reaction (JAR), by which functional groups were grafted on the surface of PP fiber, was improved about 2 times as those of fracture energy and flexural strength of cement reinforced by untreated PP fiber. PP fiber was irradiated in O$_2$ environment by Ar$\^$+/ ion. The contact angle of PP treated by IAR decreased largely when compared with untreated PP. From this result, we expected that surface energy and interfacial adhesion force of treated PP fiber increased. The strain hardening occurred in the strain-stress curve of FRC including PP treated by IAR when compared with that of FRC with untreated PP. These enhanced mechanical properties might be due to strong interaction between hydrophilic group on modified PP fiber and hydroxyl group in cement matrix. This hydrophilic group on surface modified PP fiber was confirmed by XPS analysis. We clearly observed hydration products that were fixed at modified PP fiber due to the strong adhesion force of interface in cement reinforced modified PP by SEM (Scanning Electron Microscopy) study.

방전플라즈마 소결 공정 적용 전이금속 카바이드 서멧의 소결 및 기계적 특성 (Sintering Behavior and Mechanical Property of Transition Metal Carbide-Based Cermets by Spark Plasma Sintering)

  • 이정한;박현국;홍성길
    • 한국재료학회지
    • /
    • 제32권1호
    • /
    • pp.44-50
    • /
    • 2022
  • Transition metal carbides (TMCs) are used to process difficult-to-cut materials due to the trend of requiring superior wear and corrosion properties compared to those of cemented carbides used in the cutting industry. In this study, TMC (TiC, TaC, Mo2C, and NbC)-based cermets were consolidated by spark plasma sintering at 1,300 ℃ (60 ℃min) with a pressure of 60 MPa with Co addition. The sintering behavior of TMCs depended exponentially on the function of the sintering exponent. The Mo2C-6Co cermet was fully densified, with a relative density of 100.0 %. The Co-binder penetrated the hard phase (carbides) by dissolving and re-precipitating, which completely densified the material. The mechanical properties of the TMCs were determined according to their grain size and elastic modulus: TiC-6Co showed the highest hardness of 1,872.9 MPa, while NbC-6Co showed the highest fracture toughness of 10.6 MPa*m1/2. The strengthened grain boundaries due to high interfacial energy could cause a high elastic modules; therefore, TiC-6Co showed a value of 452 ± 12 GPa.