• Title/Summary/Keyword: mechanical industry

Search Result 2,991, Processing Time 0.027 seconds

Effects of Electron Beam Irradiation on Mechanical Properties of HDPE/α-Al2O3 Composites (전자선 가교에 의한 HDPE/α-Al2O3 복합재료의 기계적 특성 평가)

  • Jung, Seung Tae;Shin, Bum Sik;Kim, Hyun Bin;Kim, Tae Uk;Jeun, Joon Pyo;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.131-135
    • /
    • 2011
  • In this study, we fabricated the HDPE and ${\alpha}-Al_2O_3$ composites with PE-g-MA as a function of the ${\alpha}-Al_2O_3$ nanopowder weight ratios. The electron beam irradiations on HDPE/${\alpha}-Al_2O_3$ composites were carried out over a range of absorbed doses from 20 to 200 kGy to make three-dimensional network structures. The mechanical properties were characterized using UTM for confirming the changes of the flexural strength and tensile strength. It was observed that the mechanical properties of HDPE were enhanced by the addition of ${\alpha}-Al_2O_3$. However, the strength of the 5 wt% ${\alpha}-Al_2O_3$ added composites decreased due to the nano-powder aggregation. The mechanical properties of composites were increased as increasing the electron beam irradiation up to 150 kGy. We believed that the electron beam irradiated HDPE/${\alpha}-Al_2O_3$ composites can be a good candidate for a variety of industrial applications.

Effect of Gamma Ray Irradiation on the Mechanical and Thermal Properties of MWNTs Reinforced Epoxy Resins

  • Shin, Bum Sik;Shin, Jin Wook;Jeun, Joon Pyo;Kim, Hyun Bin;Oh, Seung Hwan;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.137-143
    • /
    • 2011
  • Epoxy resins are widely used as high performance thermosets in many industrial applications, such as coatings, adhesives and composites. Recently, a lot of research has been carried out in order to improve their mechanical properties and thermal stability in various fields. Carbon nanotubes possess high physical and mechanical properties that are considered to be ideal reinforcing materials in composites. CNT-reinforced epoxy system hold the promise of delivering superior composite materials with their high strength, light weight and multi functional features. Therefore, this study used multi-walled carbon nanotubes (MWNT) and gamma rays to improve the mechanical and thermal properties of epoxy. The diglycidyl ether of bisphenol A (DGEBA) as epoxy resins were cured by gamma ray irradiation with well-dispersed MWNTs as a reinforcing agent and triarylsulfonium hexafluoroantimonate (TASHFA) as an initiator. The flexural modulus was measured by UTM (universal testing machine). At this point, the flexural modulus factor exhibits an upper limit at 0.1 wt% MWNT. The thermal properties had improved by increasing the content of MWNT in the result of TGA (thermogravimetric analysis). However, they were decreased with increasing the radiation dose. The change of glass transition temperature by the radiation dose was characterized by DMA (dynamic mechanical analysis).

Study on the heat transfer properties of raw and ground graphene coating on the copper plate

  • Lee, Sin-Il;Tanshen, Md.R.;Lee, Kwang-Sung;Munkhshur, Myekhlai;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.78-85
    • /
    • 2013
  • A high thermal conductivity material, namely graphene is treated by planetary ball milling machine to transport the heat by increasing the temperature. Experiments were performed to assess the heat transfer enhancement benefits of coating the bottom wall of copper substrate with graphene. It is well known that the graphene is unable to disperse into base fluid without any treatment, which is due to the several reasons such as attachment of hydrophobic surface, agglomeration and impurity. To further improve the dispersibility and thermal characteristics, planetary ball milling approach is used to grind the raw samples at optimized condition. The results are examined by transmission electron microscopy, x-ray diffraction, Raman spectrometer, UV-spectrometer, thermal conductivity and thermal imager. Thermal conductivity measurements of structures are taken to support the explanation of heat transfer properties of different samples. As a result, it is found that the planetary ball milling approach is effective for improvement of both the dispersion and heat carriers of carbon based material. Indeed, the heat transfer of the ground graphene coated substrate was higher than that of the copper substrate with raw graphene.

Heat Transfer and Total Friction Factors in the Convergent Channels with V/⋀-shaped Ribs on Two Opposite Walls (양 벽면에 V/⋀형 리브가 있는 수축 채널의 열전달과 전 마찰계수)

  • Lee, Myung-Sung;Heo, Meo-Seong;Jeong, Ui-Jae;Park, Young-Joon;Yoo, Jung-Hyun;Im, Gun-Woo;Ahn, Soo-Whan
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.66-71
    • /
    • 2016
  • The measurements of heat transfer and total friction factors for turbulent flows in the convergent rectangular channels with two opposite in-line ribbed walls are reported. The study has covered three different angled ribs ($30^{\circ}$, $45^{\circ}$ and $60^{\circ}$) and Reynolds number in the range of 22,000 to 75,000. The channel, composing of ten isolated copper sections in the length of test section of 1 m, has the channel convergence ratio of $D_{ho}/D_{hi}=0.67$. The results show that the ribs pointing downstream (${\wedge}-shaped$) is somewhat greater than the ribs pointing upstream (V-shaped) in the dimensionless Nusselt number and total friction factors.

Characterization of Epoxy Resin Containing Nano Clay Prepared by Electron Beam (전자선에 의해 제조된 나노 clay 함유 에폭시 수지의 특성)

  • Park, Jong-Seok;Lee, Seung-Jun;Lim, Youn-Mook;Jeong, Sung-In;Gwon, Hui-Jeong;Shin, Young-Min;Kang, Phil-Hyun;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.9 no.1
    • /
    • pp.9-13
    • /
    • 2015
  • Epoxy resin is widely used as aerospace, automobile, construction and electronics due to their good mechanical and electrical properties and environmental advantages. However, the inherent flammability of epoxy resin has limited its application in some field where good flame retardancy is required. Nano clay can enhance the properties of polymers such as flames retardancy and thermal stability. In this study, we have investigated the nanoclay filled epoxy composite, which has good flame retardancy while maintaining high mechanical properties. The cured epoxy resins were obtained using an electron beam curing process. The nano clays were dispersed in epoxy acrylate solution and mechanically stirred. The prepared mixtures were irradiated using an electron beam accelerator. The composites were characterized by gel content and thermal/mechanical properties. Moreover, the flammability of the composite was evaluated by limited oxygen index (LOI). The flame retardancy of nano clay filled epoxy composite was evidently improved.

Study on Natural Convection in a Rectangular Enclosure With a Heating Source

  • Bae, Kang-Youl;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.294-301
    • /
    • 2004
  • The natural convective heat transfer in a rectangular enclosure with a heating source has been studied by experiment and numerical analysis. The governing equations were solved by a finite volume method, a SIMPLE algorithm was adopted to solve a pressure term. The parameters for the numerical study are positions and surface temperatures of a heating source i.e., Y /H =0.25, 0.5, 0.75 and 11$^{\circ}C$ $\leq$ΔT$\leq$59$^{\circ}C$. The results of isotherms and velocity vectors have been represented, and the numerical results showed a good agreement with experimental values. Based on the numerical results, the mean Nusselt number of the rectangular enclosure wall could be expressed as a function of Grashof number.

Electron Beam-induced Crosslinking and Characterization of Polycaprolactone Films in the Presence of Various Crosslinking Agents

  • Kang, Dong-Woo;Jung, Chan-Hee;Hwang, In-Tae;Choi, Jae-Hak;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.107-112
    • /
    • 2011
  • Electron beam-induced crosslinking of polycaprolactone (PCL) films containing various crosslinking agents (CAs) was investigated in this study. PCL films containing various CAs prepared by a solution casting method were irradiated by electron beams at various absorption doses and the irradiated PCL films were investigated in terms of their crosslinking degree, thermal and mechanical properties, and biodegradability. Based on the results of the crosslinking degree measurement, triallyl isocyanurate was found to be most effective for the electron-beam induced crosslinking of PCL films. The results of the UTM, DMA, and TMA revealed that the thermal and mechanical properties of the crosslinked PCL films were greatly improved in comparison to those of the pure PCL. The results of the enzymatic degradation test revealed that the biodegradability of the crosslinked PCL films was reduced in comparison to that of the pure PCL.

The effect of nanoparticles on enhancement of the specific mechanical properties of the composite structures: A review research

  • Arani, Ali Ghorbanpour;Farazin, Ashkan;Mohammadimehr, Mehdi
    • Advances in nano research
    • /
    • v.10 no.4
    • /
    • pp.327-337
    • /
    • 2021
  • In this review, composite structures are used for many industries for at least four decades. Polymeric composites are one of the important structures in the aerospace and aviation industry because of their high strength and low weight. In this comprehensive review, mechanical behaviors, physical and mechanical properties of polymeric composites, different types of reinforcements, different methods to fabricate polymeric composites, historical structural composite materials for aviation and aerospace industries, and also different methods for the characterization are reported. How to use various methods of composite preparation using different nanofillers as reinforcements and its effect on the physical properties and mechanical behavior of composites are discussed as well.