• 제목/요약/키워드: mechanical energy

검색결과 9,836건 처리시간 0.038초

계장화 압입시험기를 이용한 EH36 후판 용접재의 저온특성 평가 (Evaluation of Low Temperature Properties in EH36 Thick Steel Plate Welded Material by Instrumented Indentation Equipment)

  • 김귀남;이종석;현장환;정용길;허선철
    • 동력기계공학회지
    • /
    • 제18권4호
    • /
    • pp.104-111
    • /
    • 2014
  • In this study, EH36 is thick steel plate, which welded by auto $CO_2$ gas welding machine, has been applied on offshore filed. The specimen was examined by indentation tester and it was measured for fracture toughness at $18^{\circ}C$, $0^{\circ}C$, $-20^{\circ}C$ and $-45^{\circ}C$ by low temperature chamber, respectively. The absorbed energy was got on same temperature by Charpy impact tester. The weld surface was observed for watch of changed crystalline structure by optical microscope, and fracture surface of impact test specimen were observed by scanning electron microscope(SEM).

Mechanical and Thermal Properties of Environmentally Benign Silicone Foam Filled with Wollastonite

  • Kim, Yongha;Joeng, Hyeonwoo;Lee, Kyoung Won;Hwang, Sosan;Shim, Sang Eun
    • Elastomers and Composites
    • /
    • 제55권4호
    • /
    • pp.300-305
    • /
    • 2020
  • In recent times, polymeric foams have been popularly used in various applications. To meet the demand for these applications, polymer foams with excellent mechanical and thermal properties are required. In particular, silicone foam has gained significant attention owing to its superior thermal properties and low density. In this study, the mechanical and thermal properties of silicone foams filled with wollastonite were investigated. A maximum tensile strength of 98.3 kPa was obtained by adding 15 phr of wollastonite. The specific gravity did not exhibit a marked difference up to 10 phr, but it increased substantially above 15 phr wollastonite. Thermogravimetric analysis indicated that adding wollastonite to the silicone foam increased both the amount of residue and the thermal decomposition temperature. The morphologies of the silicone foams filled with wollastonite were observed by scanning electron microscopy.

3차원 열-기계 커플링 모델에 의한 벤틸레이티드 디스크-패드 브레이크의 온도 분포와 접촉 압력에 관한 연구 (A Study on Temperature Field and Contact Pressure in Ventilated Disc-Pad Brake by 3D Thermo-mechanical Coupling Model)

  • 황평;서희창;우쉔
    • Tribology and Lubricants
    • /
    • 제25권6호
    • /
    • pp.421-426
    • /
    • 2009
  • The brake system is important part of automobile safety system. The disc brake system is divided two parts: the rotating axisymmetrical disc and the stationary pads. During braking, the kinetic energy and potential energy of moving vehicle were converted into the thermal energy through frictional heat between the brake disc and the pads. The frictional heat, which is generated on the interface of the disc and pads, can cause high temperature during the braking process. The object of present work is to determine temperature and thermal stress, to compare to simulation results and experimental results in the disc by partial 3D model of ventilated disc brake with appropriate boundary conditions. In the simulation process, the mechanical loads were applied to the thermo-mechanical coupling analysis in order to simulate the process of heat produced by friction.

열-기계적 복합 모델을 기반으로 한 Solid 디스크 브레이크의 온도장에 관한 연구 (A Study on Temperature Field of Solid Disc Brake based on Thermal-mechanical Coupled Model)

  • 우쉔;황평;전영배
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.396-401
    • /
    • 2008
  • The disc-pad brake system is an important part of automobile safety system. During braking, the kinetic energy and potential energies of a moving vehicle are converted into the thermal energy through frictional heat between the brake disc and the pads. Most of the thermal energy dissipated through the brake disc. The temperature could be exceed the critical value for a given material, which leads to undesirable effects, such as the brake fade, premature wear, brake fluid vaporization, bearing failure, thermal cracks, and thermallyexcited vibration. The object of the present study is to investigate temperature field and temperature variation of brake disc and pad during single brake. The brake disc is decelerated at the initial speed with constant acceleration, until the disc comes to stop. The pad-disc brake assembly is built by 3D model with the appropriate boundary condition. In the simulation process, the mechanical loads are applied to the thermomechanical coupling analysis in order to simulate the process of heat produced by friction.

  • PDF

DED 공정을 이용한 ATC 부품의 재제조를 위한 열-기계 특성 고찰 (Investigation of Thermo-mechanical Characteristics for Remanufacturing of a ATC Part using a DED Process)

  • 이광규;안동규
    • 소성∙가공
    • /
    • 제33권4호
    • /
    • pp.277-284
    • /
    • 2024
  • Interest in remanufacturing of part has significantly increased to reduce used material and energy together. The directed energy deposition (DED) process has widely applied to remanufacturing of the part. An excessive residual stress takes place in the vicinity of the deposited region by the DED process due to rapid heating and rapid cooling (RHRC) phenomenon. The excessive residual stress decreases the reliability of the remanufactured part. Therefore, thermo-mechanical analysis for the remanufacturing of the part is needed to investigate heat transfer and residual stress characteristics in the vicinity of the deposited region. The thermo-mechanical analysis of a large volume deposition is significantly difficult to perform due to the requirement of a long computation time and a large computer memory. The goal of this paper is to investigate thermo-mechanical characteristics for remanufacturing of the ATC part using a DED process. The methodology of the thermo-mechanical analysis for a large volume deposition is proposed. From the results of analysis, heat transfer and residual stress characteristics during deposition and cooling stages are investigated. In addition, the proper deposition strategy from the viewpoint of the residual stress is discussed.

시설원예용 난방온실의 온열환경 분석에 관한 연구 (A Study on Thermal Environment Analysis of a Greenhouse)

  • 송뢰;박윤철
    • 한국지열·수열에너지학회논문집
    • /
    • 제14권3호
    • /
    • pp.15-20
    • /
    • 2018
  • To study the effects of solar energy in a greenhouse, outdoor air temperature and wind speed on inside air temperature, a simulation model for forecasting the greenhouse air temperature was conducted on the basis of the energy and mass balance theory. Application of solar energy to the greenhouse is major area in the renewable energy research and development in order to save energy. Recently, considering the safety and efficiency of the heating of greenhouse, clean energy such as geothermal and solar energy has received much attention. The analysed greenhouse has $50m^2$ of ground area which located in jocheon-ri of Jeju Province. Experiments were carried out to collect data to validate the model. The results showed that the simulated air temperature inside a plastic greenhouse agreed well with the measured data.

Effect of Hydrogen Charging on the Mechanical Properties of 304 Stainless Steels

  • Lee, Sang-Pill;Hwang, Seung-Kuk;Lee, Jin-Kyung;Son, In-Soo;Bae, Dong-Su
    • 동력기계공학회지
    • /
    • 제19권5호
    • /
    • pp.73-79
    • /
    • 2015
  • The effects of hydrogen charging on the mechanical properties of 304 stainless steels were investigated in conjunction with the detailed examinations of their fracture modes. The dependence of the absorbed impact energy and the surface hardness of the 304 stainless steels on the hydrogen charging time was characterized. The tensile properties of the 304 stainless steels by the variation of cross-head speed were also evaluated at the room temperature. The hydrogen charging was performed by an electrolysis method for all specimens of the 304 stainless steels. The mechanical properties of the 304 stainless steels exhibited the sensitivity of embrittlement due to a hydrogen charging. The correlation between mechanical properties and fracture surfaces was discussed.

역삼투 담수시스템용 에너지회수장치의 손실극복 메커니즘 설계 (Design of Loss-reduction Mechanisms for Energy Recovery Devices in Reverse-osmosis Desalination systems)

  • 함영복;김영;노종호;신석신;박종호
    • 동력기계공학회지
    • /
    • 제16권3호
    • /
    • pp.5-9
    • /
    • 2012
  • Novel mechanisms for Energy Recovery Devices are proposed to diminish the pressure loss in the high-pressure reverse-osmosis system. In the beginning, the state-of-the-art in the design of Energy Recovery Devices is reviewed and the features of each model are investigated. The direct-coupled axial piston pump(APP) and axial piston motor(APM) showed 39% energy recovery at operating pressure of reverse osmosis desalination systems, 60 bar. Meanwhile, the developed PM2D model, in which APM pistons are arranged parallel to those of APP, is more compact and showed higher efficiency in a preliminary test. Loss-reduction mechanisms employing rod piston and double raw valve port are additionally proposed to enhance the efficiency and durability of the device.

방사성물질 수송용기 충격완충제 케이스의 좌굴변형에 의한 충격흡수효과 (Impact energy absorbing effect by the buckling of impact limiter's case of radioactive material transport cask)

  • 구정회;서기석;민덕기;김영진
    • 대한기계학회논문집A
    • /
    • 제22권4호
    • /
    • pp.826-833
    • /
    • 1998
  • The energy-absorbing characteristic of impact limiters affects the cask design so significantly that it should be evaluated as accurate as possible. The objective of this study is to find the influence of the impact limiter's steel case and gusset plates which enclose the shock absorbing cellular material on the impact energy absorption. The influence of impact limiter's steel case and gusset plate stiffeners on the impact energy absorption behavior under horizontal drop impact was evaluated for a radioactive isotope transport cask. Though the impact limiters mitigate the impact damage of the cask, the impact limiter's steel case and gusset plate stiffeners increase the impact force so significantly that should be designed as soft as possible. The impact analysis without considering impact limiter's steel case and gusset plates stiffener gives non-conservative results, so the stiffness of the steel case and gusset plates should be considered in impact analysis.

볼텍스 튜브의 에너지 분리 특성에 대한 실험적 연구 (Experimental Study on Energy Separation Characteristics of Vortex Tube)

  • 이준순;한근희;박성영
    • 대한기계학회논문집B
    • /
    • 제35권5호
    • /
    • pp.517-524
    • /
    • 2011
  • 볼텍스 튜브는 고압의 가스를 이용하여 고온 가스와 저온 가스를 분리하거나 입자상 물질의 분리에 사용 할 수 있는 장치이다. 본 연구에서는 직경 10mm의 볼텍스 튜브의 기본 설계 자료를 구축하기 위하여 에너지 분리 성능 실험을 수행하였다. 설계를 위한 기초 자료를 확보하기 위하여, 공급압력, 볼텍스 발생기의 오리피스 직경 및 튜브의 길이가 에너지 분리 특성에 미치는 영향력을 실험을 통하여 분석하였다. 결과적으로 오리피스 직경과 공급압력이 볼텍스 튜브의 성능의 지배적인 성능인자임을 확인하였다. 튜브길이가 성능에 미치는 영향은 미미하였다. Dc=0.7D, L=16D의 볼텍스 튜브에서 가장 우수한 에너지 분리효과를 얻을 수 있었다.