• Title/Summary/Keyword: mechanical design

Search Result 15,392, Processing Time 0.047 seconds

Development of a 300W Generator for Lightweight Wind Turbine

  • Lee, Hee-Kune;Lee, Hee-Joon;Kim, Sun-Hyung
    • The Journal of Korean Institute of Information Technology
    • /
    • v.15 no.12
    • /
    • pp.181-188
    • /
    • 2017
  • As a population of leisure activities grows and diversifies, there is a great demand for portable and environment-friendly power generation systems. A small wind power generation system is emerging as a suitable power generation equipment to meet these needs. The most important thing when developing a small portable wind turbine is to reduce the weight of the generator and increase the efficiency. The existing 300W wind turbine generator weighs about 10kg, which is heavy to carry. Therefore, a new generator weighing less than 4kg to make it easy to carry with high efficiency has been developed. In addition, considering complicated characteristics of wind volume and topography of Korea, a small wind turbine that can be used in urban and rural areas individually was constructed. Through basic designing and optimization, the lightweight and efficient generator was manufactured. It is a 300W wind turbine designed and fabricated with reduced weight as a prototype. The average output voltage of the generator was 24.7V at 900rpm no-load test. On a load test with the average line voltage 36.8V and the average phase current 2.62A, when the mechanical input was 339.84W, an average voltage output of the generator was measured as 289.5W with efficiency of 85.18%. The generator weight was 3.84kg.

Time-dependent characteristics of viscous fluid for rock grouting (암반 그라우팅을 위한 점성유체의 시간의존 특성 분석)

  • Lee, Jong-Won;Kim, Ji-Yeong;Weon, Jo-Hyun;Oh, Tae-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.465-481
    • /
    • 2022
  • Rock grouting is important to improve the waterproof efficiency and mechanical strength of rock medium with joint for utilizing the underground rock space such as tunnel. The grouting materials typically has been used the cement materials, which represent Bingham fluid model. This model can express the relationship of viscosity and yield strength. In addition, it is dependent with elapsed time. The grouting injection performance can be deteriorated with an increase of viscosity and yield strength in the grouting process if the time dependence is ignored. Therefore, in this study, the characteristics of viscosity and yield strength were investigated according to water-cement ratio and time dependence in the laboratory test. Numerical simulation was carried out to investigate the grouting performance according to the time dependence of characteristics in terms of the viscosity model. Given the results, the grouting injected distance and cumulative grout volume were significantly decreased when the time dependence of grouting material was considered. This study, considering the characteristics according to the time dependence of viscosity and yield strength, will be meaningful to the design of grouting injection in field applications.

Development of an augmented reality based underground facility management system using BIM information (BIM을 활용한 증강현실 기반 지하시설물 관리 시스템 개발에 관한 연구)

  • Shin, Jaeseop;An, Songkang;Song, Jeongwoog
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.525-538
    • /
    • 2022
  • In Korea, safety accidents are continuously occurring due to the aging of underground facilities and lack of systematic management. Moreover, although the underground space is continuously being developed, the current status information is not clearly recorded and managed, so there is a limit to the systematic management of underground facilities. Therefore, this study developed an augmented reality-based system that can effectively maintain and manage underground facilities that are difficult to manage because they are located underground. In order to develop an augmented reality-based underground facility management system, three essential requirements, 'precise localization', 'use of BIM information', and 'ensure usability' were derived and reflected in the system. By utilizing Broadcast-RTK, the positional precision was secured to cm level, and the configuration and attribute information of the BIM was converted into the IFC format to construct a system that could be implemented in augmented reality. It developed an application that can optimize usability. Finally, through simulation, the configuration and attribute information of structures and mechanical systems constituting underground facilities were implemented in augmented reality. In addition, it was confirmed that the accurate and highly consistent augmented reality system works even in harsh environment (near high-rise building).

Convergence study of mechanical properties and biocompatability of Ti Gr4 surface coated with HA using plasma spray for ossoeintegration (골융합 촉진을 위한 Ti Gr4의 HA 코팅에 대한 물리적 특성과 생체안정성에 대한 융합적 연구)

  • Hwang, Gab-Woon
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.145-151
    • /
    • 2021
  • This study aimed to investigate the efficient conduct of HA coating on Ti Gr4 for the practical use of medical device. Ti Gr4 alloy specimens measuring 𝜱 25mm × 1mm were sprayed with hydroxyapatite using thermal spray according to ASTM F1185-88. The surface was evaluated at #120, #400, #1,000 sandpaper and barrel finishing. Each coating properties was analyzed using SEM, UTS 20,000psi cap. and in vitro cytotoxicity. Surface morphology consists of well molten particles with very little resolidified or unmolten areas. The average Ca/P ratio is 1.74 which is in good agreement with theoretical value of 1.67. The average roughness Ra is very representative of roughness of specimen. The coatings are dense and well adhered to the substrate. The average bond strength was 61.74 MPa with a standard deviation of 4.06 which indicates fairly reliable results for ASTM 633 type tests. Variations in results from jig design, epoxy used, crosshead speeds etc. in vitro cytotoxicity result had a Grade 3. The results of the study are expected to be helpful in osseointegration and plasma-spray HA coated Ti Gr4 are more satisfactory in HA coating thickness elevation which is preferable to any other system.

Numerical Study on Performance of PEMFC with Block and Sub-channel of Cathode Flow Field (캐소드 유로에서 블록과 서브 채널의 고분자전해질 연료전지의 성능에 관한 전산해석 연구)

  • Jo, Seonghun;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.613-620
    • /
    • 2021
  • A flow channel shape of PEMFC has an influence on the internal flow uniformity. If the reactant distribution in a flow path is not uniform during operation, both catalyst deactivation and mechanical damage of membrane could occur resulting in decreasing the membrane electrode assembly (MEA) durability. Numerous studies concerning flow design have been conducted to make smooth supply and uniform distribution of reactants in fuel cells. The baffle of flow path could improve fuel cell performance through the forced convection effect. A sub-channel, as an additional air flow path, could increase the reactant concentration and reduce the mass transfer loss via a smooth water discharge. In this study, computational fluid dynamics (CFD) was used to analyze the effect of blocks and sub-channels on the current density and oxygen concentration of the fuel cell. As a result, the limit current density and oxygen concentration at a rear block increased when using blocks and sub-channels in a flow channel. In particular, the current density increased significantly when the sub-channel was placed between two blocks. Also, the sub-channel position was optimized by analyzing the oxygen concentration, and the oxygen concentration was recovered at a rear block in the fuel cell.

A Numerical Study on the Selection of Main Specification of the 18.5ft Bass Fishing Boat (18.5ft급 경기용 배스보트의 주요제원 선정에 관한 수치해석 연구)

  • Lim, Jun-Taek;Seo, Kwang-Cheol;Park, Geun-Hong;Kim, Sang-Won
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.945-952
    • /
    • 2018
  • Recently, bass fishing has become a marine leisure sport in Korea. There are 4 major fishing associations in Korea, and each association holds 10-15 tournaments each year. However, supply of 17 ft bass boats, which are preferred in leagues, depends 100 % on imports. In this study, we have derived the main specifications to develop the initial hull forms of a 18.5ft bass boat through statistical analysis based on mothership data. In addition, CFD numerical analysis was carried out according to deadrise angle and longitudinal center of gravity, which strongly influenced the resistance and planing performance. For numerical analysis, design speed was set to $Fn=3.284 (Re=9.858{\times}10^7)$, the deadrise angle was set from 12 to $20^{\circ}$, and the longitudinal center of gravity was set in the range of 0 to $8%L_{wL}$ from the center of buoyancy to the stern. Based on the numerical results, we first set the range of these factors by resistance performance and immersion keel length. Furthermore, using a correlation graph of Savitsky's Drag-Lift ratio, we derived the deadrise angle ($14-16^{\circ}$) and longitudinal center of gravity ($4-6%L_{wL}$).

Structural Integrity Assessment of Helicopter Composite Rotor Blade by Analyzing Bird-strike Resistance (조류충돌 해석을 통한 헬리콥터 복합재 로터 블레이드 구조 건전성 평가)

  • Park, Jehong;Jang, Jun Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.8-14
    • /
    • 2019
  • Bird-strike is one of the most important design factors for safety in the aviation industry. Bird-strikes have been the cause of significant damage to aircraft and rotorcraft structures and the loss of life. This study used DYTRAN software to simulate the transient response of an Euler-Lagrangian composite helicopter blade that has been impacted by a bird. The Arbitrary Lagrangian Eulerian (ALE) method and a suitable equation of state were applied to model the bird. ALE was applied to the bird-strike analysis due to the large difference between the properties of the blade and bird. The debris of the bird was assumed to be a fluid and applied as Euler elements after the collision. Through the analysis of bird impacts, the leading-edge of the rotor blade (50.8 mm) was used to identify a positive margin of 1.18 based on the TSAI-FILL criteria. The results are assessed to be sufficiently reliable and may be evaluated to replace tests with various analysis conditions. The structural stability of the rotor blade could be assessed by applying various load conditions and different modeling methods in the future.

Study on EPB TBM performance by conducting lab-scaled excavation tests with different foam injection for artificial sand (실내 굴진 시험을 통한 폼 주입 조건에 따른 인공 사질토 지반에서 EPB TBM 굴진성능에 대한 고찰)

  • Lee, Hyobum;Shin, Dahan;Kim, Dae-Young;Shin, Young Jin;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.545-560
    • /
    • 2019
  • During EPB TBM tunnelling, an appropriate application of additives such as foam and polymer is an essential factor to secure the stability of TBM as well as tunnelling performance. From the '90s, there have been many studies on the optimal injection of additives worldwidely contrary to the domestic situation. Therefore, in this paper, the foam, which is widely adopted for soil conditioning, was selected as an additive in order to investigate the effect of foam injection on TBM performance through a series of laboratory excavation tests. The excavation experiments were carried out on artificial sandy soil specimens with consideration of the variance of FIR (Foam Injection Ratio), FER (Foam Expansion Ratio) and $C_f$ (Surfactant Concentration), which indicate the amount and quality of the foam. During the tests, torque values were measured, and the workability of conditioned soil was evaluated by comparing the slump values of muck after each experiment. In addition, a weight loss of the replaceable aluminum cutter bits installed on the blade was measured to estimate the degree of abrasion. Finally, the foam injection ratio for the optimal TBM excavation for the typical soil specimen was determined by comparing the measured torque, slump value and abrasion. Note that the foam injection conditions satisfying the appropriate level of machine load, mechanical wear and workability are essential in the EPB TBM operational design.

A Full Scale Hydrodynamic Simulation of High Explosion Performance for Pyrotechnic Device (파이로테크닉 장치의 고폭 폭발성능 정밀 하이드로다이나믹 해석)

  • Kim, Bohoon;Yoh, Jai-ick
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • A full scale hydrodynamic simulation that requires an accurate reproduction of shock-induced detonation was conducted for design of an energetic component system. A detailed hydrodynamic analysis SW was developed to validate the reactive flow model for predicting the shock propagation in a train configuration and to quantify the shock sensitivity of the energetic materials. The pyrotechnic device is composed of four main components, namely a donor unit (HNS+HMX), a bulkhead (STS), an acceptor explosive (RDX), and a propellant (BPN) for gas generation. The pressurized gases generated from the burning propellant were purged into a 10 cc release chamber for study of the inherent oscillatory flow induced by the interferences between shock and rarefaction waves. The pressure fluctuations measured from experiment and calculation were investigated to further validate the peculiar peak at specific characteristic frequency (${\omega}_c=8.3kHz$). In this paper, a step-by-step numerical description of detonation of high explosive components, deflagration of propellant component, and deformation of metal component is given in order to facilitate the proper implementation of the outlined formulation into a shock physics code for a full scale hydrodynamic simulation of the energetic component system.

Development of Model Requirements Checklist for Utilizing BIM in Construction Phase - Focused on the MEP - (시공단계 BIM 활용을 위한 모델 요구조건 체크리스트 개발 - MEP를 중심으로 -)

  • Kim, Woojin;Park, Jinho;Cha, Yongwoon;Hyun, Changtaek;Han, Sangwon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.1
    • /
    • pp.22-31
    • /
    • 2019
  • The application of BIM that can manage and integrate information generated during the entire life cycle of buildings in domestic and overseas construction projects is becoming active. When BIM is utilized in the construction phase, it can shorten the construction period, reduce the occurrence of reworks and improve collaboration capability. However, there are limitations in applying BIM to the construction phase due to the insufficient definition level of domestic BIM guidelines and inadequate design standards. In this regard, this study developed BIM model requirements checklist for the application of BIM in the construction phase. To develop the checklists, 21 domestic and overseas BIM guidelines, three public construction projects and four private construction projects to which construction BIM was applied, were analyzed. Based on the guidelines and cases, a total of 62 construction BIM model requirements (31 model objects and 31 attribute rules) and proposed construction BIM model requirement checklists by dividing the 61 requirements according to the requirement and purpose for utilization were identified. It is expected that the practical applications of the checklists proposed in this study will improve the level of BIM model in construction phase. In addition, this study has its significance as a basic research that can be used in the development of standardized guidelines for BIM model in construction phase from academic aspects.