• Title/Summary/Keyword: mechanical design

Search Result 15,341, Processing Time 0.043 seconds

Method of Bicycle Configuration Design Based on Part-Shape Information Model (부품 형상 정보 모델 기반의 자전거 편집설계 방법)

  • Lee, Jaesun;Kim, Byung Chul;Lee, Hanmin;Park, Seong Whan;Myung, Byung Soo;Mun, Duhwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.74-84
    • /
    • 2015
  • The core activities of a bicycle manufacturer are design, engineering analysis, and manufacturing. Therefore, it is important to develop a configuration design system for bicycles in order to automate the design process and facilitate the use of design data in engineering analysis and manufacturing. In this paper, we present a method to develop a bicycle configuration design system based on the part-shape information model. The proposed method enables the construction of a CAD library using modeling functions with equations and parameters that are common to most 3D mechanical CAD systems. Furthermore, the part-shape information model ensures the independence between the configuration design system and the library, making it possible to extend the CAD library flexibly without changing the system architecture.

MECHANICAL DESIGN APPROACH FOR THE VIRTUAL MOCK-UP STUDY OF BUILDING ENVELOPE DESIGN AND FABRICATION

  • Minjung M.;Yongcheol L.
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.158-162
    • /
    • 2013
  • Building envelope systems with growing complexity in geometry and performance criteria demand adapted workflow processes toward the efficient integration of their design and fabrication. To facilitate integration of the workflow process, this study analyzes relationships among teams who share digital models and exchange information that help project participants identify areas of improvement in task allocation and exchanges among various actors, systems, and activities. In addition, major gaps identified in knowledge transfer, project tracking, and design integration during the performance evaluation stages, emphasize the need for a more comprehensive approach to integrating the design, the fabrication, and the construction parameters of building envelope systems. To evaluate the effectiveness of streamlining interactions of design parameters with fabrication constraints and constructability assessments, this paper examines a mechanical design approach as it applies to various project scenarios to develop a mechanical solution for streamlining building envelope design and construction workflow.

  • PDF

Design Variables of Chemical-Mechanical Polishing Conditioning System to Improve Pad Wear Uniformity (패드 마모 균일성 향상을 위한 CMP 컨디셔닝 시스템 설계 변수 연구)

  • Park, Byeonghun;Park, Boumyoung;Jeon, Unchan;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.38 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • Chemical-mechanical polishing (CMP) process is a semiconductor process that planarizes a wafer surface using mechanical friction between a polishing pad and a substrate surface during a specific chemical reaction. During the CMP process, polishing pad conditioning is applied to prevent the rapid degradation of the polishing quality caused by polishing pad glazing through repeated material removal processes. However, during the conditioning process, uneven wear on the polishing pad is inevitable because the disk on which diamond particles are electrodeposited is used. Therefore, the abrasion of the polishing pad should be considered not only for the variables during the conditioning process but also when designing the CMP conditioning system. In this study, three design variables of the conditioning system were analyzed, and the effect on the pad wear profile during conditioning was investigated. The three design variables considered in this study were the length of the conditioner arm, diameter of the conditioner disk, and distance between centers. The Taguchi method was used for the experimental design. The effect of the three design variables on pad wear and uniformity was assessed, and new variables used in conditioning system design were proposed.

Structural Analysis for Thickness Minimization Design of a Bileaflet Mechanical Heart (기계식 인공심장판막의 경량화 설계를 위한 구조해석)

  • 권영주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.643-646
    • /
    • 2001
  • This paper investigates the structural analysis and design of mechanical heart valve through the numerical analysis methodology. In a numerical analysis methodology application to the thickness minimization structural design of mechanical heart valve, structural analysis is performed for the blood flow through a bileaflet mechanical heart valve. The structural static analysis is carried out to confirm the thickness minimization structural condition (minimum thickness shape of leaflet).

  • PDF

Optimal Design of the Flexure Mounts for Satellite Camera by Using Design of Experiments (실험계획법을 이용한 인공위성 주반사경 플렉셔 마운트의 최적 설계)

  • Kim, Hyun-Jung;Seo, Yu-Deok;Youn, Sung-Kie;Lee, Seung-Hoon;Lee, Deog-Gyu;Lee, Eung-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.693-700
    • /
    • 2008
  • The primary mirror system in a satellite camera is an opto-mechanically coupled system for a reason that optical and mechanical behaviors are intricately interactive. In order to enhance the opto-mechanical performance of the primary mirror system, opto-mechanical behaviors should be thoroughly investigated by using various analysis procedures such as elastic, thermo-elastic, optical and eigenvalue analysis. In this paper, optimal design of the bipod flexure mounts for high opto-mechanical performance is performed. Optomechanical performances considered in this paper are RMS wavefront error under the gravity and thermal loading conditions and 1st natural frequency of the mirror system. The procedures of the flexure mounts design based on design of experiments and statistics is as follows. The experiments for opto-mechanical analysis are constructed based on the tables of orthogonal arrays and analysis of each experiment is carried out. In order to deal with the multiple opto-mechanical properties, MADM (Multiple-attribute decision making) is employed. From the analysis results, the critical design variables of the flexure mounts which have dominant influences on opto-mechanical performance are determined through analysis of variance and F-test. The regression model in terms of the critical design variables is constructed based on the response surfaceanalysis. Then the critical design variables are optimized from the regression model by using SQP algorithm. Opto-mechanical performance of the optimal bipod flexure mounts is verified through analysis.

A Development of Casting Design Automation Framework (주조방안 자동설계 프레임워크 구축)

  • Cho, Won-Chul;Kim, Sung-Min;Nyamsuren, Purevdorj;Sohn, Jung-Woo;Lee, Soo-Hong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.2
    • /
    • pp.91-96
    • /
    • 2012
  • Use of casting simulation software, analyzing the reason for defect became easy. However, to create a practical solution, experienced casting expert's knowledge is always indispensable. In this study, we develop casting design automation system and the algorithm based on casting expert's knowledge, so that faster and more accurate design is enabled. Especially, to generate runner which can be shaped in numerous ways, we suggest the 'nexus' method to shape runner system.

An Automatic Design System of Mechanical Structure Using Evolutionary Computation (진화 연산법을 이용한 기계구조 자동설계 시스템)

  • Jeon, Jin-Wan;Lee, In-Ho;Cha, Joo-Heon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1124-1129
    • /
    • 2003
  • In mechanical design, design process is mainly composed of design, explanation and evaluation. In this paper, Using Genetic Algorithms (GA), Evolutionary computation is introduced as new design process. This method promote the efficiency and power of design. Due to the known characteristics of the stage, the approach basically involves a synthetic design method with the composition of building blocks representing the elements of mechanical objects. In order for the building blocks to be more suitable for representation and evolution of mechanical structures, Elementary Cell Blocks (ECBs) are introduced as new building blocks. In this paper, we have demonstrated the implementation of the approach with the design of gear systems.

  • PDF

Computational Fluid Dynamic Analysis of New Model Hydraulic Valve Meter (신모델 밸브 수압측정기의 유동해석)

  • Lee, Jong-Sun;Kwon, Nu-Ri;So, Jae-Min;Kim, Min-Woo;Oh, Byeong-Ok;Noh, Gyu-Chang
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.769-771
    • /
    • 2012
  • 기존의 수압측정기와 다르게 물을 좌 우로 보내고 밸브를 수평 수직으로 변환할 수 있으며 컨트롤러를 장착하여 압력을 조절할 수 있는 새로운 방식의 밸브 수압측정기를 개발하였다. 신모델 밸브 수압측정기는 CATIA를 활용하여 모델링하였다. 또한 신모델 밸브 수압측정기의 유동해석은 유한요소해석 코드인 ANSYS를 활용하여 물의 속도, 물의 흐름을 구하였다.

  • PDF

Structural Analysis of New Model Hydraulic Valve Meter (신모델 밸브 수압측정기의 구조해석)

  • Lee, Jong-Sun;Kwon, Nu-Ri;So, Jae-Min;Kim, Min-Woo;Oh, Byeong-Ok;Noh, Gyu-Chang;Kim, Hyun-Jong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.765-768
    • /
    • 2012
  • 기존의 수압측정기와 다르게 물을 좌 우로 보내고 밸브를 수평 수직으로 변환할 수 있으며 컨트롤러를 장착하여 압력을 조절할 수 있는 신모델 밸브 수압측정기를 개발하였다. 신모델 밸브 수압측정기는 CATIA를 활용하여 모델링하였다. 또한 신모델 밸브 수압측정기의 구조해석은 유한요소해석 코드인 ANSYS를 활용하여 내부압력에 따른 누수, 응력, 변형률, 변형량을 구하였다.

  • PDF