• Title/Summary/Keyword: mechanical components

Search Result 3,303, Processing Time 0.039 seconds

Precise Prediction of Optical Performance for Near Infrared Instrument Using Adaptive Fitting Line

  • Ko, Kyeongyeon;Han, Jeong-Yeol;Nah, Jakyoung;Oh, Heeyoung;Yuk, In-Soo;Park, Chan;Chun, Moo-Young;Oh, Jae Sok;Kim, Kang-Min;Lee, Hanshin;Jeong, Ueejeong;Jaffe, Daniel T.
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.307-314
    • /
    • 2013
  • Infrared optical systems are operated at low temperature and vacuum (LT-V) condition, whereas the assembly and alignment are performed at room temperature and non-vacuum (RT-NV) condition. The differences in temperature and pressure between assembly/alignment environments and operation environment change the physical characteristics of optical and opto-mechanical parts (e.g., thickness, height, length, curvature, and refractive index), and the resultant optical performance changes accordingly. In this study, using input relay optics (IO), among the components of the Immersion GRating INfrared Spectrograph (IGRINS) which is an infrared spectrograph, a simulation based on the physical information of this optical system and an actual experiment were performed; and optical performances in the RT-NV, RT-V, and LT-V environments were predicted with an accuracy of $0.014{\pm}0.007{\lambda}$ rms WFE, by developing an adaptive fitting line. The developed adaptive fitting line can quantitatively control assembly and alignment processes below ${\lambda}/70$ rms WFE. Therefore, it is expected that the subsequent processes of assembly, alignment, and performance analysis could not be repeated.

The Optimization of Continuous Casting Process for Production of Copper Clad Steel Wire (동피복 복합선재 제조를 위한 연속주조공정의 최적화)

  • Cho, Hoon;Kim, Dae-Geun;Hwang, Duck-Young;Jo, Hyung-Ho;Kim, Yun-Kyu;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.25 no.6
    • /
    • pp.259-264
    • /
    • 2005
  • The copper clad steel wire is used extensively as lead wires of electronic components such as capacitors, diodes and glass sealing lamp because the wire combines the strength and low thermal expansion characteristic of Fe-Ni steel with the conductivity and corrosion resistance of copper. In order to fabricate the copper clad steel wire, several processes including electro-plating, tubecladding extrusion process and dip forming process have been introduced and applied. The electroplating process for the production of copper clad steel wire shows poor productivity and induces environmental load generation such as electroplating solution. The dip forming process is suitable to mass production of copper clad steel such as trolley wire. and need expensive manufacturing facilities. The present paper describes the improvement of the conventional continuous casting process to fabricate copper clad steel wire, which its core metal is low thermal expansion Fe-Ni alloy and its sheath material is copper. In particular, the formation of intermetallic compound at interface between core and sheath was investigated in order to introduce optimum continuous casting process parameter for fabrication of copper clad steel wire with higher electrical conductivity. The mechanical strength of copper clad steel wire was also investigated through wiredrawing process with of 95% in total reduction ratio.

An Evaluation of Multiple-input Dual-output Run-to-Run Control Scheme for Semiconductor Manufacturing

  • Fan, Shu-Kai-S.;Lin, Yen
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.1
    • /
    • pp.54-67
    • /
    • 2005
  • This paper provides an evaluation of an optimization-based, multiple-input double-output (MIDO) run-to-run (R2R) control scheme for general semiconductor manufacturing processes. The controller in this research, termed adaptive dual response optimizing controller (ADROC), can serve as a process optimizer as well as a recipe regulator between consecutive runs of wafer fabrication. In evaluation, it is assumed that the equipment model could be appropriately described by a pair of second-order polynomial functions in terms of a set of controllable variables. Of practical relevance is to consider a drifting effect in the equipment model since in common semiconductor practice the process tends to drift due to machine aging and tool wearing. We select a typical application of R2R control to chemical mechanical planarization (CMP) in semiconductor manufacturing in this evaluation, and there are five different CMP process scenarios demonstrated, including mean shift, variance increase, and IMA disturbances. For the controller, ADROC, an on-line estimation technique is implemented in a self-tuning (ST) control manner for the adaptation purpose. Subsequently, an ad hoc global optimization algorithm based on the dual response approach, arising from the response surface methodology (RSM) literature, is used to seek the optimum recipe within the acceptability region for the execution of next run. The main components of ADROC are described and its control performance is assessed. It reveals from the evaluation that ADROC can provide excellent control actions for the MIDO R2R situations even though the process exhibits complicated, nonlinear interaction effects between control variables, and the drifting disturbances.

Investigation of Strength Characteristics of Ferrous Slag and Waste Concrete in Water Contacting Environment by Exposure to Raining Events

  • Kim, Byung-Gon;Shin, Hyunjin;Lee, Seunghak;Park, Junboum
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.2
    • /
    • pp.1-7
    • /
    • 2016
  • Ferrous slag is a by-product from steel making process and waste concrete is generated from construction activities. Large part of ferrous slag and waste concrete are recycled as construction materials. However, Ca2+ leaching out of ferrous slag and waste concrete in the water-contacting environment can cause a strength change. Strength can be reduced due to the dissolution of solid form of CaO which is one of the main contents of ferrous slag and waste concrete. On the other hand, strength can be enhanced due to the pozzolanic reaction of cementitious components with water. In this study, steelmaking slag, blast furnace slag, and waste concrete were aged by exposure to raining events, and the change of their compaction and shear strength characteristics was investigated. Optimum moisture content of all materials used in this study increased with aging period while maximum dry unit weight slightly decreased, implying that the relative contents of fine particles increased as the CaO solid particles were dissolved. Internal friction angle and shear strength of recycled materials also increased with aging period, indicating that the materials became denser by the decrease of void ratio attributed to the fine particles generated during the weathering process and the development of cementitious compounds increasing the bonding and interlocking forces between the particles. The results of this study demonstrated that mechanical strength of recycled materials used as construction materials has little chance to be deteriorated during their service life.

Effect of Moisture on Molecular Motions of Chitosan/Polycaprotactam Blends (키토산/카프로락탐 혼합체에 대한 수분의 영향)

  • Liao Shen-Kun;Hung Chi-Chih;Lin Ming-Fung
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.433-443
    • /
    • 2004
  • The membranes of the blends of chitosan and polycaprolactarn (PA6) were prepared in formic acid. FT-IR data revealed that hydrogen bonding between amide and hydroxyl groups of chitosan and PA6, respectively, was formed. Thermogravimetric analysis demonstrated that the blend samples contain water. DMA results showed that the dissipation of water in the samples significantly reduced the storage modulus (E'). The mechanical loss tangent (tan $\delta$) data of the blend samples showed the $\beta$d loss peak around $0^{\circ}C$. The blend samples were completely dried in a vacuum and then exposed to high moisture to absorb water which would cause, so called, w-bridges between the molecules. The E' data of these regained samples increased abnormally and additional loss peak appeared on the shoulder of the peak around $50^{\circ}C$. Under dry condition, the samples with a blend ratio of 40/60 for chitosan/PA6 displayed a better miscibility between two components.

MODAL TESTING AND MODEL UPDATING OF A REAL SCALE NUCLEAR FUEL ROD

  • Park, Nam-Gyu;Rhee, Hui-Nam;Moon, Hoy-Ik;Jang, Young-Ki;Jeon, Sang-Youn;Kim, Jae-Ik
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.821-830
    • /
    • 2009
  • In this paper, modal testing and finite element modeling results to identify the modal parameters of a nuclear fuel rod as well as its cladding tube are discussed. A vertically standing full-size cladding tube and a fuel rod with lead pellets were used in the modal testing. As excessive flow-induced vibration causes a failure in fuel rods, such as fretting wear, the vibration level of fuel rods should be low enough to prevent failure of these components. Because vibration amplitude can be estimated based on the modal parameters, the dynamic characteristics must be determined during the design process. Therefore, finite element models are developed based on the test results. The effect of a lumped mass attached to a cladding tube model was identified during the finite element model optimization process. Unlike a cladding tube model, the density of a fuel rod with pellets cannot be determined in a straightforward manner because pellets do not move in the same phase with the cladding tube motion. The density of a fuel rod with lead pellets was determined by comparing natural frequency ratio between the cladding tube and the rod. Thus, an improved fuel rod finite element model was developed based on the updated cladding tube model and an estimated fuel rod density considering the lead pellets. It is shown that the entire pellet mass does not contribute to the fuel rod dynamics; rather, they are only partially responsible for the fuel rod dynamic behavior.

Estimation for Dynamic Deformation of the Cushioning Materials of Packaging for the Pears by Shock and Vibration During Transportation (유통 중 진동충격에 의한 배 포장 완충재의 동적 변위 추정)

  • Jung, Hyun-Mo;Park, In-Sig;Kim, Man-Soo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.11 no.1
    • /
    • pp.17-24
    • /
    • 2005
  • During handling unitized products, they are subjected to a variety environmental hazards. Shock and vibration hazards are generally considered the most damaging of the environmental hazards on a product, and it may encounter while passing through the distribution environment. A major cause of shock damage to products is drops during manual handling. The increasing use of unitization on pallets has been resulted in a reduction in the manual handling of products and with it a reduction in the shock hazards. This has caused and increasing interest in research focused on vibration caused damage. the use of pallets as a base for unitizing loads, aids in the mechanical handling, transportation and storage of products. Besides aiding in the handling, transportation and storage of products, a pallet also acts on and interface between the packaged goods and the distribution environment. The determination of the impact deformation of the cushioning materials such as tray cup (polymeric foam) and corrugated fiberboard pad must be carried out to design the proper packaging system providing adequate protection for the fruit, and to understand the complex interaction between the components of fruit when they relate to expected transportation vibration inputs. In this study, the theoretical analysis of impact deformation for cushioning materials by dynamic vibration. The impact deformations of SW and DW corrugated fiberboard pad in acceleration amplitudes of 0.25 G-rms and 0.5 G-rms that were usually generated in transport vehicles during distribution environments were very small compare with the thickness of corrugated fiberboard pad. The maximum of vibration acceleration level of tray cup by vibration impact was about 3.2 G-rms. The theoretical allowable acceleration (G-factor) of the pear was 0.7102 G-rms, and the maximum dynamic deformation estimated within G-factor was about 1 mm.

  • PDF

Effects of Composition of Metallic Friction Materials on Tribological Characteristics on Sintered Metallic Brake Pads and Low-Alloy Heat-Resistance Steel for Trains (철도차량용 금속계 소결마찰재의 조성에 따른 트라이볼로지 특성)

  • Yang, Yong Joon;Lee, Hi Sung
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.330-336
    • /
    • 2014
  • Sintered metallic brake pads and low alloy heat resistance steel disks are applied to mechanical brake systems in high energy moving machines that are associated with recently developed 200km/h trains. This has led to the speed-up of conventional urban rapid transit. In this study, we use a lab-scale dynamometer to investigate the effects of the composition of friction materials on the tribological characteristics of sintered metallic brake pads and low alloy heat resistance steel under dry sliding conditions. We conduct test under a continuous pressure of 5.5 MPa at various speeds. To determine the optimal composition of friction materials for 200 km/h train, we test and the evaluate frictional characteristics such as friction coefficients, friction stability, wear rate, and the temperature of friction material, which depend on the relative composition of the Cu-Sn and Fe components. The results clearly demonstrate that the average friction coefficient is lower for all speed conditions, when a large quantity of iron power is added. The specimen of 25 wt% iron powder that was added decreased the wear of the friction materials and the roughness of the disc surface. However when 35 wt% iron powder was added, the disc roughness and the wear rate of friction materials increased By increasing the amount of iron powder, the surface roughness, and temperature of the friction materials increased, so the average friction coefficients decreased. An oxidation layer of $Fe_2O_3$ was formed on both friction surfaces.

A Simple, Rapid, and Automatic Centrifugal Microfluidic System for Influenza A H1N1 Viral RNA Purification

  • Park, Byung Hyun;Jung, Jae Hwan;Oh, Seung Jun;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.277.1-277.1
    • /
    • 2013
  • Molecular diagnostics consists of three processes, which are a sample pretreatment, a nucleic acid amplification, and an amplicon detection. Among three components, sample pretreatment is an important process in that it can increase the limit of detection by purifying nucleic acid in biological sample from contaminants that may interfere with the downstream genetic analysis such as nucleic acid amplification and detection. To achieve point-of-care virus detection system, the sample pretreatment process needs to be simple, rapid, and automatic. However, the commercial RNA extraction kits such as Rneasy (Qiagen) or MagnaPure (Roche) kit are highly labor-intensive and time-consuming due to numerous manual steps, and so it is not adequate for the on-site sample preparation. Herein, we have developed a rotary microfluidic system to extract and purify the RNA without necessity of external mechanical syringe pumps to allow flow control using microfluidic technology. We designed three reservoirs for sample, washing buffer, and elution buffer which were connected with different dimensional microfluidic channels. By controlling RPM, we could dispense a RNA sample solution, a washing buffer, and an elution buffer successively, so that the RNA was captured in the sol-gel solid phase, purified, and eluted in the downstream. Such a novel rotary sample preparation system eliminates some complicated hardwares and human intervention providing the opportunity to construct a fully integrated genetic analysis microsystem.

  • PDF

Annealing Characteristics of Ultrafine Grained AA1050/AA5052 Complex Aluminum Alloy Sheet Fabricated by Accumulative Roll-Bonding (반복겹침접합 압연공정에 의해 제조한 초미세립 AA1050/AA5052 복합알루미늄합금판재의 어닐링 특성)

  • Lee, Seong-Hee;Lee, Gwang-Jin
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.655-659
    • /
    • 2011
  • An ultrafine grained complex aluminum alloy was fabricated by an accumulative roll-bonding (ARB) process using dissimilar aluminum alloys of AA1050 and AA5052 and subsequently annealed. A two-layer stack ARB process was performed up to six cycles without lubricant at an ambient temperature. In the ARB process, the dissimilar aluminum alloys, AA1050 and AA5052, with the same dimensions were stacked on each other after surface treatment, rolled to the thickness reduction of 50%, and then cut in half length by a shearing machine. The same procedure was repeated up to six cycles. A sound complex aluminum alloy sheet was fabricated by the ARB process, and then subsequently annealed for 0.5h at various temperatures ranging from 100 to $350^{\circ}C$. The tensile strength decreased largely with an increasing annealing temperature, especially at temperatures of 150 to $250^{\circ}C$. However, above $250^{\circ}C$ it hardly decreased even when the annealing temperature was increased. On the other hand, the total elongation increased greatly above $250^{\circ}C$. The hardness exhibited inhomogeneous distribution in the thickness direction of the specimens annealed at relatively low temperatures, however it had a homogeneous distribution in specimens annealed at high temperatures.