• Title/Summary/Keyword: mechanical circuits

Search Result 235, Processing Time 0.022 seconds

Lateral Position Measurement System for Precision Alignment of Roll-to-Roll Printing Using Alignment Patterns and Quantity of Light (정렬패턴과 광량을 이용한 롤투롤 인쇄전자공정의 횡 방향 웹 위치 측정 시스템)

  • Jung, Minkyu;Kim, Hyungi;Oh, Dongho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.879-884
    • /
    • 2015
  • Printed electronics is a technology that produces electronic devices and circuits by printing functional ink on a web, which is a film-like flexible material. This technology is suitable for large-scale and high-speed mass production, and is a next-generation process technology that can fabricate electronic devices from flexible materials. As precise measurement of the positions of the web is required in order to commercialize such a printed electronics process, a measurement system with an optical encoder with a precision of micrometers had been proposed in the preceding research of this study. However, the lateral positions of the web could not be measured in the preceding research as the phenomenon of the entire web being moved in the lateral direction could not be detected. In this study, a measurement system that utilizes the differences in the amount of light reflected from the alignment patterns depending on the web positions in the lateral direction was proposed for measuring the lateral positions of the web. In addition, its reliability was verified and then the effect when measuring printed alignment patterns was analyzed by experiments.

Knee Joint Control of New KAFO for Polio Patients Gait Improvement (소아마비 환자의 보행개선을 위한 새로운 장하지 보조기의 무릎관절 제어)

  • 강성재;조강희;김영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.132-135
    • /
    • 2002
  • In the present study, an electro-mechanical KAFO (knee-ankle-foot orthosis) which satisfies both the stability in stance and the knee flexion in swing was developed and evacuated in eight polio patients. A knee joint control algorithm suitable for polio patients who are lack of the stability in pre-swing was also developed and various control systems and circuits were also designed. In addition, knee flexion angles and knee moments were measured and analyzed for polio patients who used the developed KAFO with the three-dimensional motion analysis system. Energy consumption was also evaluated for the developed KAFO by measuring the movement of the COG (center of gravity) during gait. From the present study, the designed foot switch system successfully determined the gait cycle of polio patients and controlled knee joint of the KAFO, resulting in the passive knee flexion or foot clearance during swing phase. From the three-dimensional gait analysis for polio patients, it was found that the controlled-knee gait with the developed electro-mechanical KAFO showed the knee flexion of 40$^{\circ}$∼45$^{\circ}$ at an appropriate time during swing. Vertical movements of COG in controlled-knee gait (gait with the developed electro-mechanical KAFO) were significantly smaller than those in looked knee gait(gait with the locked knee Joint). and correspondingly controlled-knee gait reduced approximately 40% less energy consumption during horizontal walking gait. More efficient gait patterns could be obtained when various rehabilitation training and therapeutic programs as well as the developed electro-mechanical KAFO were applied for polio patients.

  • PDF

A Switching Notch Filter for Reducing the Torque Ripple Caused by a Harmonic Drive in a Joint Torque Sensor (하모닉 드라이브의 토크리플 감소를 위한 조인트 토크센서용 스위칭 노치필터)

  • Kim, Joon-Hong;Kim, Young-Loul;Song, Jae-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.709-715
    • /
    • 2011
  • Harmonic drives have been widely used in combination with joint torque sensors in order to facilitate accurate manipulator control. A harmonic drive causes a torque ripple because of its structural characteristics, and this torque ripple tends to deteriorate the performance of a controller or observer that uses torque sensors. This paper proposes a switching notch filter for reducing the torque ripple caused by a harmonic drive in a joint torque sensor; the functioning of this filter is based on the relationship between the frequency components of the torque ripple and the rotational velocity of the harmonic drive. The proposed switching notch filter is advantageous in that it requires less computational load and does not necessitate additional circuits or structures. Various experiments demonstrate that the proposed filter has good filtering performance, fast response, and good switching stability.

A System Simulation Model of Proton Exchange Membrane Fuel Cell for Residential Power Generation for Thermal Management Study (가정용 연료전지 시스템의 열관리 해석을 위한 시스템 운전 모델 개발)

  • Yu, Sang-Seok;Lee, Young-Duk;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.19-26
    • /
    • 2010
  • A PEMFC(proton exchange membrane fuel cell) is a good candidate for residential power generation to be coped with the shortage of fossil fuel and green house gas emission. The attractive benefit of the PEMFC is to produce electric power as well as hot water for home usage. The thermal management of PEMFC for RPG is to utilize the heat of PEMFC so that the PEMFC can be operated at its optimal efficiency. In this study, thermal management system of PEMFC stack is modeled to understand the dynamic response during load change. The thermal management system of PEMFC for RPGFC is composed of two cooling circuits, one for controling the fuel cell temperature and the other for heating up the water for home usage. The different operating strategy is applied for each cooling circuit considering the duty of those two circuits. Even though the capacity of PEMFC system (1kW) is enough to supply hot domestic water for residence, heat-up of reservior takes some hours. Therefore, in this study, time schedule of the simulation reflects the heat-up process. Dynamic responses and operating strategies of the PEMFC system are investigated during load changes.

Faultproof Design in Space for Monopropellant Rocket Engine Assembly (단일추진제 로켓 엔진 어셈블리를 위한 우주 공간에서의 과실 방지 설계)

  • Han, Cho-Young;Kim, Jeong-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1377-1384
    • /
    • 2003
  • An analysis has been performed for active thermal control of the KOMPSAT monopropellant rocket engine assembly, i.e., dual thruster module(DTM). The main efforts of this work have been directed at determining proper heater sizes for propellant valves and catalyst beds necessary to maintain their temperatures within specified temperature ranges under KOMPSAT environment and operational conditions. The TAS incorporated with TRASYS thermal radiation analyzer was used to establish a complete heat transfer model which allows to predict the DTM temperature as a function of time. The thermal analysis has been performed in transient mode to verify the appropriate power for catalyst bed heaters necessary to increase catalyst bed temperature to the required value within a specified period of time. Similar analysis has been executed to validate the heater power for the thermostatically controlled primary and redundant heater circuits used to prevent hydrazine freezing, i.e., single fault. Moreover the effect of the radiative property of thermal control coating of heat shield was examined. Thruster firing condition was also simulated for the heat soakback condition. As a consequence, all thermal analysis results for DTM satisfactorily met the thermal requirements for the KOMPSAT DTM under the worst case average voltage, i.e. 25 volt.

Design of a Dexterous Anthropomorphic Robot Hand (유연한 인간형 로봇 손의 설계)

  • Chi Ho-June;Lee Sang-Hun;Choi Byung-June;Choi Hyouk-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.357-363
    • /
    • 2006
  • According to the study of grasping of the human hand, it is noted that the metacarpal link of the thumb plays the key role in power grasping. Also the face of fingertip can be discriminated into five parts depending on the grasping modalities such as pinch grasp, fingertip grasp and power grasp. In this paper, the design of the anthropomorphic robot hand which has a thumb and three fingers is proposed. A difference of SKKU hand II from the previous gripperlike robot hand is that the metacarpal bone is connected between the thumb and the palm. This thumb mechanism is specially designed to get the degree of freedom which can realize flexible motions relative to objects. Based on the analysis, the hand mechanism is developed. Since the driving circuits for the hand are embedded in the hand, only the communication lines supporting CAN protocol with DC power cable are necessary as the input. A new robot is manufactured and feasibility of the hand is validated through preliminary experiments.

Velocity Field Measurement of Flow Around an Axial Fan Using a Phase Averaged 2-Frame PTV Technique (위상평균 PTV 기법을 이용한 축류 홴 주위 유동의 속도장 측정 연구)

  • Choi, Jay-Ho;Kim, Hyoung-Bum;Lee, Sang-Joon;Lee, In-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.114-123
    • /
    • 2000
  • The flow structure around a rotating axial-fan was experimentally investigated using a phase averaging velocity field measurement technique. The fan blades were divided into 4 different phases, for which 500 velocity fields were acquired for each phase angle with a 2-frame PTV system. Velocity field measurements were also carried out at two planes parallel to the axis of rotation, with offsets toward the radial direction of the fan. For accurate synchronization of the PTV system with the phase of the axial fan, two synchronization circuits were employed with a photo-detector attached to the rotating shaft. The phase averaged velocity fields show periodic variations with respect to the blade phase. The periodic formation of vortices at the blade tip is also observed in vorticity contour plots. Locations of local maximum turbulence intensities in the axial and radial directions are found to be located in an alternating pattern. These experimental results can be used to validate numerical calculations and to understand the flow characteristics of an axial fan.

Wall Heat Flux Behavior of Nucleate Pool Boiling Under a Constant Temperature Condition in a Binary Mixture System (일정 벽면 온도 조건에서 이성분 혼합물의 핵비등시 벽면 열유속 거동)

  • Bae, Sung-Won;Lee, Han-Choon;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1239-1246
    • /
    • 2000
  • The objective of this work is to measure space and time resolved wall heat fluxes during nucleate pool boiling of R113/R11 mixtures using a microscale heater array in conjunction with a high speed CCD. The microscale heater array is constructed using VLSI techniques, and consists of 96 serpentine platinum resistance heaters on a transparent quartz substrate. Electronic feedback circuits are used to keep the temperature of each heater at a specified temperature and the variation in heating power required to keep the temperature constant is measured. Heat flux data around an isolated bubble are obtained with triggered CCD images. CCD images are obtained at a rate of 1000frames/second. The heat transfer variation vs. time on the heaters directly around the nucleation site is plotted and correlated with images of the bubble obtainedby using the high speed CCD. For both of the mixture(R11/R113) and pure system(pure R11, pure R113), the wall heat fluxes are presented and compared to find out the qualitative difference between pure and binary mixture nucleate boiling.

Magnetic Circuit Design Methodology of MR CDC Dampers for Semi-Active Suspensions (반능동 서스펜션용 MR CDC 댐퍼의 자기회로 설계기법)

  • Park, Jae-Woo;Jung, Young-Dae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.48-57
    • /
    • 2008
  • MR Fluid, one of functional fluids, is developed for the application to automobile products. MR CDC damper using MR fluid has following principles. When ar electric current is applied to the solenoid, apparent viscosity of MR fluid passing through the annular gap which acts as magnetic circuits varies directly as the intensity of the current. These devices have a simple structure and excellent lime response characteristics, emerging as the alternatives of the conventional semi-active suspension systems. In this study, a design procedure of the magnetic circuit through the solenoid fore and the flux ring functioning as a magnetic path is investigated so as to optimize the design and performance of MR CDC dampers for the vehicles. In addition, an operating point on the B-H curve, the magnetization according to the variation in the annular gap, the pole piece width and the density of MR fluid are studied to design the optimal piston head within the restrained dimension range.

Optimum Geometric and Electrical Parameter for minimization Torque Ripple of Switched Reluctance Motor (스위치드 릴럭턴스 전동기의 토오크 리플 저감을 위한 기하학적인 파라미터와 전기적인 파라미터의 최적화)

  • Jung, S.I.;Choi, J.H.;Kim, Y.H.;Kim, S.;Lee, J.;Ju, M.S.;Choi, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.608-610
    • /
    • 2001
  • In this paper, 6/4 Switched Reluctance Motor(SRM) which has simple structure and little switching element is selected basic analysis model. In order to reduce torque ripple causing noise and vibration, we execute optimization of geometric parameters (stator and rotor pole arc) and electrical parameters (turn-on angle and turn-of angle) by means of combining Fletcher-Reeves's Conjugate Directions and Finite Element Method (FEM) considering driving circuits. When considering the switching condition according to inductance profile, torque characteristics is influenced by geometric and electrical parameters importantly. The pole arc and switching angle of the optimum can also obtain the low torque ripple without high currents.

  • PDF