• Title/Summary/Keyword: mechanical characterization

Search Result 1,174, Processing Time 0.03 seconds

An exact solution for mechanical behavior of BFRP Nano-thin films embedded in NEMS

  • Altabey, Wael A.
    • Advances in nano research
    • /
    • v.5 no.4
    • /
    • pp.337-357
    • /
    • 2017
  • Knowledge of thin films mechanical properties is strongly associated to the reliability and the performances of Nano Electro Mechanical Systems (NEMS). In the literature, there are several methods for micro materials characterization. Bulge test is an established nondestructive technique for studying the mechanical properties of thin films. This study improve the performances of NEMS by investigating the mechanical behavior of Nano rectangular thin film (NRTF) made of new material embedded in Nano Electro Mechanical Systems (NEMS) by developing the bulge test technique. The NRTF built from adhesively-bonded layers of basalt fiber reinforced polymer (BFRP) laminate composite materials in Nano size at room temperature and were used for plane-strain bulging. The NRTF is first pre-stressed to ensure that is no initial deflection before applied the loads on NRTF and then clamped between two plates. A differential pressure is applying to a deformation of the laminated composite NRTF. This makes the plane-strain bulge test idea for studying the mechanical behavior of laminated composite NRTF in both the elastic and plastic regimes. An exact solution of governing equations for symmetric cross-ply BFRP laminated composite NRTF was established with taking in-to account the effect of the residual strength from pre-stressed loading. The stress-strain relationship of the BFRP laminated composite NRTF was determined by hydraulic bulging test. The NRTF thickness gradation in different points of hemisphere formed in bulge test was analysed.

Synthesis and Characterization of Soluble Polyimide as Membrane material

  • 전종영;현진호;탁태문
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.10a
    • /
    • pp.56-57
    • /
    • 1994
  • Polyimides are one of the most important classes of highperformance polymers. Due to their excellent electriccal, thermal, and high-temperature mechanical properties. The polyimide and its derivatives have found many applications. But their uses are limited by their poor solubilities. In fact, most polyimides were processed in the form of their precursors, polyamic acid, which were subsequently converted to the imide structure.

  • PDF