• Title/Summary/Keyword: mechanical characteristic analysis

Search Result 977, Processing Time 0.023 seconds

Hydrodynamic performance of a pump-turbine model in the "S" characteristic region by CFD analysis

  • Singh, Patrick Mark;Chen, Chengcheng;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1017-1022
    • /
    • 2015
  • Specific hydrodynamic characteristic of pump-turbine during the start and load rejection process of generating mode causes anomalous increase of water pressure, along with large machine vibration, called "S" characteristic. The aim of this study is to understand and explain the hydrodynamic performance of pump-turbine at "S" characteristic region by using a model of pump-turbine system. The operation in the condition of runway and low discharge in a typical "S" characteristic curve may become unstable and complex flow appears at the passage of guide vane and impeller. Therefore, velocity and pressure distribution are investigated to give an all-sided explanation of the formation and phenomenon of this characteristic, with the assistance of velocity triangle analysis at the impeller inlet. From this study, the internal flow and pressure fluctuation at the normal, runway and low discharge points are explored, giving a deep description of hydrodynamic characteristic when the pump-turbine system operates with "S" characteristic.

A Comparative Analysis for the Performance of 200 N-class Gaseous Methane-Liquid Oxygen Small Rocket Engine According to the Characteristic Length Variation (특성길이 변화에 따른 200 N급 기체메탄-액체산소 소형로켓엔진의 성능 비교 분석)

  • Kang, Yun Hyeong;Ahn, Hyun Jong;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.85-92
    • /
    • 2020
  • Ground hot-firing tests were conducted to analyze the combustion performance according to the characteristic lengths 1.37 m, 1.71 m, and 2.06 m of the combustion chamber in 200 N-class GCH4-LOx small rocket engine. Thrust, specific impulse, and characteristic velocity at the steady-state could be obtained as the key performance parameters of the rocket engine. The performance characteristics acquired through the test were compared and analyzed with the theoretical performance calculated from CEA analysis. Observation of the influence of characteristic length on the combustion performance indicates that an optimal characteristic length shall remain between 1.71 m and 2.06 m.

A Optimization of Butterfly Valve using the Characteristic Function (특성함수를 이용한 Butterfly Valve의 최적설계)

  • Park, Young-Chul;Choi, Jong-Sub;Kang, Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.59-65
    • /
    • 2005
  • In today's industry, the butterfly valve has been used to control a flow effectively. However, it is difficult to have the existing structural optimization using field analysis from CFD to structure analysis when the structure is influenced by fluid. Therefore, an initial model of this study is to evaluate the stability of the valve using FEM and CFD. And, it selected variable using initial analysis results. Also, it accomplished the shape optimization design using the orthogonal arrangement and characteristic function. Research result, a few experiments showed the optimal results of there dimensional structures to be multi-objective.

Probabilistic dynamic analysis of truss structures

  • Chen, J.J.;Che, J.W.;Sun, H.A.;Ma, H.B.;Cui, M.T.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.2
    • /
    • pp.231-239
    • /
    • 2002
  • The problem of dynamic analysis of truss structures based on probability is studied in this paper. Considering the randomness of both physical parameters (elastic module and mass density) of structural materials and geometric dimension of bars respectively or simultaneously, the stiffness and mass matrixes of the elements and structure have been built. The structure dynamic characteristic based on probability is analyzed, and the expressions of numeral characteristics of inherence frequency random variable are derived from the Rayleigh's quotient. The method of structural dynamic analysis based on probability is developed. Finally, two examples are given.

Vibration Analysis of Reciprocating Hydrogen Compressor (왕복동 수소 압축기의 진동 분석 및 평가)

  • Cho, Sung-Won;Lee, Jung-Hwan;Kim, Hyo-Jung;Choi, Byeong-Keun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1020-1025
    • /
    • 2007
  • The reciprocating type hydrogen compressor is for high pressure and volume. However this type compressor makes pulsation caused by mechanical characteristic. This type compressor also makes noise and vibration that cause negative effect to machine and working condition. Therefore, diagnosis and countermeasure are needed to decrease vibration for safety on hydrogen compressor. therefore in this paper, the numerical analysis and vibration measurement is conducted in order to investigate vibration characteristic and to evaluation vibration condition, Respectively

  • PDF

Design and Analysis of A Mini Linear Optical Pickup Actuator

  • Park, Joon-Hyuk;Baek, Yoon-Su;Park, Young-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1616-1627
    • /
    • 2003
  • This paper describes a mini linear optical pickup actuator. To reduce the size, inner yokes are designed to guide the mover and outer yokes of permanent magnets are removed. Magnetic circuit method is used to determine the thrust force. Virtual path method is proposed to analyze the open magnetic circuit analysis. The magnetic circuit of the proposed actuator can be a closed circuit due to the virtual path model of the outer magnetic flux. The validity of virtual path method is evaluated by comparing to the FEM analysis. Structural vibration is investigated using FEM and the design of the mover is modified to improve the vibration characteristic. Dynamic characteristic experiments shows that the performance of the proposed actuator is enough to be used as a coarse and fine seeking actuator simultaneously and the thrust force margin for loading a focusing actuator is guaranteed.

Shape Optimization of the Lower Control Arm using the Characteristic Function and the Fatigue Analysis (특성함수와 피로해석을 이용한 로워컨트롤암의 형상최적설계)

  • Park Youngchul;Lee Donghwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.119-125
    • /
    • 2005
  • The current automotive is seeking the improvement of performance, the prevention of environmental pollution and the saving of energy resources according to miniaturization and lightweight of the components. And the variance analysis on the basis of structure analysis and DOE is applied to the lower control am. We have proposed a statistical design model to evaluate the effect of structural modification by performing the practical multi-objective optimization considering weight, stress and fatigue lift. The lower control arm is performed the fatigue analysis using the load history of real road test. The design model is determined using the optimization of acquired load history with the fatigue characteristic. The characteristic function is made use of the optimization according to fatigue characteristics to consider constrained function in the optimization of DOE. The structure optimization of a lower control arm according to fatigue characteristics is performed. And the optimized design variable is D=47 m, T=36mm, W=12 mm. In the real engineering problem of considering many objective functions, the multi-objective optimization process using the mathematical programming and the characteristic function is derived an useful design solution.

Robust Optimization Design of Overhead Crane with Constraint Using the Characteristic Functions

  • Hong, Do-Kwan;Choi, Seok-Chang;Ahn, Chan-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.12-17
    • /
    • 2006
  • This study uses a characteristic function to explain correlations between the objective function and design variables. For the use, structural analysis and buckling analysis are carried out. the dimensional change of an original overhead crane is made based on the table of orthogonal array. For two functions or more, the effectiveness of design change can be evaluated in accordance with change in design parameters. Also, the overhead crane's weight is reduced by up to 10.55 percent while its structural stability maintained.

Structural Analysis and Dynamic Characteristics Analysis of CNC Automatic Lathe Structure (CNC 복합 자동선반 구조물의 구조해석 및 동특성 분석에 관한 연구)

  • Yang, Dong-Ho;Lee, Sang-Hyeop;Cha, Seung-Hwan;Kwak, Jin;Lee, Jong-Chan;Lee, Young-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.21-27
    • /
    • 2022
  • This study was conducted to evaluate the structural stability of a CNC automatic lathe structure and avoid resonance. The analysis conditions were analyzed by applying the weight of the upper assembly. From the structural analysis, the stress and deformation were low, and the safety factor was high. From the dynamic characteristic analysis, it was determined that resonance does not occur because the natural frequency is outside the driving range. The error between the dynamic characteristic analysis and vibration test results is very low; thus, the reliability of the analysis results can be secured.