• Title/Summary/Keyword: mechanical assessment

Search Result 1,344, Processing Time 0.025 seconds

Feasibility Assessment of New Hybrid Linear Motor Using Magnetostrictive Material

  • Kim, Jaehwan;Doo, Jae-Kyun;Kim, Jae-Do
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.26-30
    • /
    • 2001
  • This paper deals with the feasibility assessment of hybrid linear motor that operates based on self-moving cell concept. The moving cell is composed of Magnetostrictive actuator and a ring structure, and a cell train is constructed by connecting two cells in series. Since this motor uses strong push force of Terfenol-D actuators and friction of the cells, it can essentially produce long stroke and large force. The overall performance of the motor was measured in terms of speed and force.

  • PDF

Assessment of a Phase Doppler Anemometry Technique in Dense Droplet Laden Jet

  • Koo, Ja-Ye;Kim, Jong-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1083-1094
    • /
    • 2003
  • This study represents an assessment of the phase-Doppler technique to the measurements of dense droplet laden jet. High-pressure injection fuel sprays have been investigated to evaluate the use of the Phase-Doppler anemometry (PDA) technique. The critical issue is the stability of the phase-Doppler anemometry technique for dense droplet laden jet such as Diesel fuel spray in order to insure the results from the drop size and velocity measurements are repeatable, consistent, and physically realistic because the validation rate of experimental data is very low due to the thick optical density. The effect of shift frequency is minor, however, the photomultiplier tube (PMT) voltage setting is very sensitive to the data acquisition and noise in dense droplet laden jet. The optimum PMT voltage and shift frequency should be chosen so that the data such as volume flux and drop diameter do not change rapidly.

Design Review and Common-Cause Failure Modeling of mechanical Parts (기계류품 DR 및 공통원인고장 모델링)

  • 하영주;송준엽;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.324-327
    • /
    • 2001
  • This paper shows an example of the Design Review and Common-Cause Failure (CCF) Modeling of mechanical Parts. Reliability should be continuously monitored during the entire period of design. Design Review is the procedure to improve the reliability for the product. We proposed the reliability assessment and design review method. CCF Model is the general dependent model considering the failure mode effects several component simultaneously. This study considers the computation of the network with dependent components. It is important that CCF model is applied for mechanical pars.

  • PDF

Performance Assessment for Feeding System of Ultraprecision Machine Tool Driven by friction Drive (마찰구동기구로 구동되는 초정밀 이송계의 특성 평가)

  • Song, Chang-Gyu;Sin, Yeong-Jae;Lee, Hu-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.64-70
    • /
    • 2002
  • The positioning system fur the ultraprecision machine tool should have nanometer order of positioning resolution. For the purpose of achieving that resolution, various feed drive devices have been proposed and currently hydrostatic lead screw and friction drive are paid attention. It is reported that an angstrom resolution can be achieved by using twist-roller friction drive. So we have manufactured ultraprecision feeding system driven by the twist-roller friction drive and perform performance assessment for problem definition and solution finding. As a result, we found that the twist-roller friction drive is mechanically suitable for ultraprecision positioning but some considerations are needed to get higher resolution.

Assessment of speckle image through particle size and image sharpness

  • Qian, Boxing;Liang, Jin;Gong, Chunyuan
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.659-668
    • /
    • 2019
  • In digital image correlation, speckle image is closely related to the measurement accuracy. A practical global evaluation criterion for speckle image is presented. Firstly, based on the essential factors of the texture image, both the average particle size and image sharpness are used for the assessment of speckle image. The former is calculated by a simplified auto-covariance function and Gaussian fitting, and the latter by focusing function. Secondly, the computation of the average particle size and image sharpness is verified by numerical simulation. The influence of these two evaluation parameters on mean deviation and standard deviation is discussed. Then, a physical model from speckle projection to image acquisition is established. The two evaluation parameters can be mapped to the physical devices, which demonstrate that the proposed evaluation method is reasonable. Finally, the engineering application of the evaluation method is pointed out.

Multi-dimensional finite element analyses of OECD lower head failure tests

  • Jang Min Park ;Kukhee Lim
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4522-4533
    • /
    • 2022
  • For severe accident assessment of reactor pressure vessel (RPV), it is important to develop an accurate model that can predict transient thermo-mechanical behavior of the RPV lower head under the given condition. The present study revisits the lower head failure with two- and three-dimensional finite element models. In particular, we aim to give clear insight regarding the effect of the three-dimensionality present in the distribution of the thickness and thermal load of the lower head. For a rigorous validation of the result, both the OLHF-1 and the OLHF-2 tests are considered in this study. The result suggests that the three-dimensional effect is not negligible as far as the failure location is concerned. The non-uniformity of the thickness distribution is found to affect the failure location and time. The thermal load, which may not be axisymmetric in general, has the most significant effect on the failure assessment. We also observe that the creep property can affect the global deformation of the lower head, depending on the applied mechanical load.

A Study on Fatigue Life Assessment Procedure for a Container Crane (컨테이너 크레인의 피로수명 평가 방법에 관한 연구)

  • 정동관;윤기봉
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.2
    • /
    • pp.11-18
    • /
    • 1999
  • Proper fatigue life prediction procedures are needed for mechanical structures which requires high durability and reliability. In this paper, a fatigue life prediction procedure has been developed for predicting fatigue life of moving structure under variable loadings. The developed procedure was efficiently applied for a fatigue life calculation of a container crane. Especially, the procedure is useful for safety assessment by computer simulation. A computer program was developed for fatigue life assessment by adopting the forementioned procedure.

  • PDF

Safety Assessment in Operation of Human-centered Robots - An Information-theoretic Approach

  • Choi, Gi-Heung
    • International Journal of Safety
    • /
    • v.5 no.2
    • /
    • pp.12-17
    • /
    • 2006
  • Operations of human-centered robot, in general, facilitates the creation of new process that may potentially harm the human operators. Design of safety-guaranteed operation of human-centered robots is, therefore, important since it determines the ultimate outcomes of operations involving safety of human operators. This study discusses the application of information-theoretic measures to safety assessment of human-centered robotic operations. Some examples are given.

Assessment of Safety Performances in Operation of Human-centered Robots Using Geometric Tolerance and Head Injuries Criteria

  • Choi, Gi-Heung
    • International Journal of Safety
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • Operation of human-centered robot, in general, facilitates the creation of new process that may potentially harm the human operators. Design of safety-guaranteed operation of human-centered robots is, therefore, important since it determines the ultimate outcomes of operations involving safety of human operators. This study discusses the application of geometric tolerance and head injury criteria to safety assessment of human-centered robotic operations. Examples show that extending "Work Area" has more significant effect on the uncertainty in safety than extending the system range in the presence of velocity control.

A Simulation Tool for Ultrasonic Inspection

  • Krishnamurthy, Adarsh;Mohan, K.V.;Karthikeyan, Soumya;Krishnamurthy, C.V.;Balasubramaniam, Krishnan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.3
    • /
    • pp.153-161
    • /
    • 2006
  • A simulation program SIMULTSONIC is under development at CNDE to help determine and/or help optimize ultrasonic probe locations for inspection of complex components. SIMULTSONIC provides a ray-trace based assessment for immersion and contact modes of inspection. The code written in Visual C++ operating in Microsoft Windows environment provides an interactive user interface. In this paper, a description of the various features of SIMULTSONIC is given followed by examples illustrating the capability of SIMULTSONIC to deal with inspection of canonical objects such as pipes. In particular, the use of SIMULTSONIC in the inspection of very thin-walled pipes (with 450 urn wall thickness) is described. Ray trace based assessment was done using SIMULTSONIC to determine the standoff distance and the angle of oblique incidence for an immersion mode focused transducer. A 3-cycle Hanning window pulse was chosen for simulations. Experiments were carried out to validate the simulations. The A-scans and the associated B-Scan images obtained through simulations show good correlation with experimental results, both with the arrival time of the signal as well as with the signal amplitudes.