• Title/Summary/Keyword: mechanical art

Search Result 315, Processing Time 0.026 seconds

Cinematic Adaptation of Brecht's Gestus (브레히트 연기론의 영화적 변용 양상)

  • Kim, Jong-Guk
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.1
    • /
    • pp.59-67
    • /
    • 2019
  • This article examines how Brecht's Gestus is borrowed and transformed into the film. I examined the critical debates on the film's use of Brecht and the style of Brecht's acting adopted in radical experimental films and Hollywood films. In addition, through the case of Korean film actor/ress, I sought to apply the Brechtian theory. First, despite the criticism that the film's acceptance of Brecht is overly formal and mechanical, film theory and practice reflect Brecht's ideas. In particular, regardless of the socio-political situation of Brecht's day, his Gestus is suitable and useful for film acting. Brecht's thought was realized by technological innovations such as montage and computer special effects, and above all, the social attitude of the actor was popularized through the education of the audience. Second, his strategy on performance is no longer unfamiliar, and goes beyond the boundaries of contradictory daily life and art, and becomes the pleasure of popular film. Although the intentions of naturalism and anti-naturalism in acting arts are different, the process and effects look at the same point. Third, through the case of Korean film actor/ress as an attempt of popular understanding about Brecht strategy, I could confirm the possibility of searching identity of Korean film actor/ress.

Simulating tentacle Creature with External Magnetism for Animatronics (외부 자력을 이용한 촉수 생명체 애니매트로닉스 시뮬레이션)

  • Ye Yeong Kim;Do Hee Kim;Ju Ran Kim;Na Hyun Oh;Myung Geol Choi
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.5
    • /
    • pp.1-9
    • /
    • 2023
  • The control technology of animatronics is an interesting topic explored in various fields, including engineering, medicine, and art, with ongoing research efforts. The conventional method for controlling the movement of animatronics is to use electric motors installed inside the body. However, this method is difficult to apply when expressing a narrow space inside the body. In this study, a method of using external forces instead of installing mechanical devices inside the body was proposed to control the movement of a thin and long tentacle organism. Specifically, in this study, the joint body of animatronics was made of magnetic metal material so that it could be affected by the force of an externally installed electromagnet. The strength of the electromagnet was controlled by a PID controller to enable real-time control of the position of the animatronics body. In addition, the magnet was made to rotate, and the speed of rotation was changed to create various movements. Through virtual environment simulations, our experiments demonstrate the superiority of the proposed method, showcasing real-time control by users and the creation of animations in various styles.

Stellite bearings for liquid Zn-/Al-Systems with advanced chemical and physical properties by Mechanical Alloying and Standard-PM-Route

  • Zoz, H.;Benz, H.U.;Huettebraeucker, K.;Furken, L.;Ren, H.;Reichardt, R.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2000.04a
    • /
    • pp.9-10
    • /
    • 2000
  • An important business-field of world-wide steel-industry is the coating of thin metal-sheets with zinc, zinc-aluminum and aluminum based materials. These products mostly go into automotive industry. in particular for the car-body. into building and construction industry as well as household appliances. Due to mass-production, the processing is done in large continuously operating plants where the mostly cold-rolled metal-strip as the substrate is handled in coils up to 40 tons unwind before and rolled up again after passing the processing plant which includes cleaning, annealing, hot-dip galvanizing / aluminizing and chemical treatment. In the liquid Zn, Zn-AI, AI-Zn and AI-Si bathes a combined action of corrosion and wear under high temperature and high stress onto the transfer components (rolls) accounts for major economic losses. Most critical here are the bearing systems of these rolls operating in the liquid system. Rolls in liquid system can not be avoided as they are needed to transfer the steel-strip into and out of the crucible. Since several years, ceramic roller bearings are tested here [1.2], however, in particular due to uncontrollable Slag-impurities within the hot bath [3], slide bearings are still expected to be of a higher potential [4]. The today's state of the art is the application of slide bearings based on Stellite\ulcorneragainst Stellite which is in general a 50-60 wt% Co-matrix with incorporated Cr- and W-carbides and other composites. Indeed Stellite is used as the bearing-material as of it's chemical properties (does not go into solution), the physical properties in particular with poor lubricating properties are not satisfying at all. To increase the Sliding behavior in the bearing system, about 0.15-0.2 wt% of lead has been added into the hot-bath in the past. Due to environmental regulations. this had to be reduced dramatically_ This together with the heavily increasing production rates expressed by increased velocity of the substrate-steel-band up to 200 m/min and increased tractate power up to 10 tons in modern plants. leads to life times of the bearings of a few up to several days only. To improve this situation. the Mechanical Alloying (MA) TeChnique [5.6.7.8] is used to prOduce advanced Stellite-based bearing materials. A lubricating phase is introduced into Stellite-powder-material by MA, the composite-powder-particles are coated by High Energy Milling (HEM) in order to produce bearing-bushes of approximately 12 kg by Sintering, Liquid Phase Sintering (LPS) and Hot Isostatic Pressing (HIP). The chemical and physical behavior of samples as well as the bearing systems in the hot galvanizing / aluminizing plant are discussed. DependenCies like lubricant material and composite, LPS-binder and composite, particle shape and PM-route with respect to achievable density. (temperature--) shock-reSistibility and corrosive-wear behavior will be described. The materials are characterized by particle size analysis (laser diffraction), scanning electron microscopy and X-ray diffraction. corrosive-wear behavior is determined using a special cylinder-in-bush apparatus (CIBA) as well as field-test in real production condition. Part I of this work describes the initial testing phase where different sample materials are produced, characterized, consolidated and tested in the CIBA under a common AI-Zn-system. The results are discussed and the material-system for the large components to be produced for the field test in real production condition is decided. Outlook: Part II of this work will describe the field test in a hot-dip-galvanizing/aluminizing plant of the mechanically alloyed bearing bushes under aluminum-rich liquid metal. Alter testing, the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed. Part III of this project will describe a second initial testing phase where the won results of part 1+11 will be transferred to the AI-Si system. Part IV of this project will describe the field test in a hot-dip-aluminizing plant of the mechanically alloyed bearing bushes under aluminum liquid metal. After testing. the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed.

  • PDF

Shadow of War Covering the Steam Punk Animations (스팀펑크 애니메이션에 드리운 전쟁의 그늘 -미야자키 하야오 감독의 작품을 중심으로-)

  • Oh, Jin-hee
    • Cartoon and Animation Studies
    • /
    • s.46
    • /
    • pp.63-84
    • /
    • 2017
  • Overwhelming images of vividly colored aircraft flying across the blue sky and steam gushing from massive machines are reminiscent of Japanese animation films, especially of works by master director Hayao Miyazaki. By presenting together steam engines, which are mechanical devices of the Industrial Age in the past, and aircraft of the future age, the director constructs ambiguous space and time. These special time and space constitute nostalgia for past time, with devices called steam engines as a medium, and a longing for science and the future as represented by aircraft. In addition, the anticipation and disappointment, ideals and regrets of humans who see these two from the perspective of the present are projected on the works. This shares the characteristic of the steam punk genre, which seeks to return to the past rather than to face current problems. A subgenre of science fiction (henceforth "sci-fi"), steam punk reflects fundamental skepticism of science and technology and mechanized civilization, which have developed beyond human control. In addition, as works that clearly display such characteristics, director Miyazaki's and < $Nausica{\ddot{a}}$ of the Valley of Wind> can be examined. With spectacles of steam engines and aircraft, these two works enticingly visualize narratives about nature and humans and about the environment and destruction. Such attractiveness on the part of the master director's works has led to support from fans worldwide. However, often in the backgrounds of director Miyazaki's works, which have depicted ideal worlds of nature, environment, and community as highly concentrated fantasies, lie presuppositions of war and the end of the world. As works that are especially prominent in such characteristics, there are and . These two works betray the expectations of the audience by establishing the actual wartime as the temporal background and proceeding toward narratives of reality. Trapped in the ontological identity of the director himself, the war depicted by him projects a subjective and romantic attitude. Such a problem stems also from the ambiguity of the hybrid space and time, which is basic to the steam punk genre. This is because the basic characteristic of steam punk is to transplant past time, which humans were able to control, in the future from a perspective of optimism and longing via steam engines rather than to face current problems. In this respect, steam punk animation films in themselves can be seen as having significance and limitations at the same time.

Can We Hear the Shape of a Noise Source\ulcorner (소음원의 모양을 들어서 상상할 수 있을까\ulcorner)

  • Kim, Yang-Hann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.586-603
    • /
    • 2004
  • One of the subtle problems that make noise control difficult for engineers is “the invisibility of noise or sound.” The visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical or numerical means to visualize the sound field have been attempted and as a result, a great deal of progress has been accomplished, for example in the field of visualization of turbulent noise. However, most of the numerical methods are not quite ready to be applied practically to noise control issues. In the meantime, fast progress has made it possible instrumentally by using multiple microphones and fast signal processing systems, although these systems are not perfect but are useful. The state of the art system is recently available but still has many problematic issues : for example, how we can implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently it is often difficult to determine the origin of the noise and the spatial shape of noise, as highlighted in the title. The first part of this paper introduces a brief history, which is associated with “sound visualization,” from Leonardo da Vinci's famous drawing on vortex street (Fig. 1) to modern acoustic holography and what has been accomplished by a line or surface array. The second part introduces the difficulties and the recent studies. These include de-Dopplerization and do-reverberation methods. The former is essential for visualizing a moving noise source, such as cars or trains. The latter relates to what produces noise in a room or closed space. Another mar issue associated this sound/noise visualization is whether or not Ivecan distinguish mutual dependence of noise in space : for example, we are asked to answer the question, “Can we see two birds singing or one bird with two beaks?"