• Title/Summary/Keyword: meanflow

Search Result 5, Processing Time 0.017 seconds

Development of internal inflow/outflow steady mean flow boundary condition using Perfectly Matched Layer for the prediction of turbulence-cascade interaction noise (난류-캐스케이드 상호작용 소음 예측을 위한 Perfectly Matched Layer 을 이용한 내부 입/출구 정상유동 경계조건의 개발)

  • Kim, Dae-Hwan;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.521-526
    • /
    • 2012
  • It is essential for the accurate time-domain prediction of broadband noise due to turbulence-cascade interaction to develop inflow/outflow boundary conditions to satisfy the following three requirements: to maintain the back ground mean flow, to nonreflect the outgoing disturbances and to generate the specified input gust. The preceding study(1) showed that Perfectly Matched Layer (PML) boundary condition was successfully applied to absorb the outgoing disturbances and to generate the specified gust in the time-domain computations of broadband noise due to interaction of incident gust with a cascade of flat-plates. In present study, PML boundary condition is extended in order to predict steady mean flow that is needed for the computation of noise due to interaction of incident gust with a cascade of airfoils. PML boundary condition is originally designed to absorb flow disturbances superimposed on the steady meanflow in the buffer zone. However, the steady meanflow must be computed before PML boundary condition is applied on the flow computation. In the present paper, PML equations are extended by introducing source term to maintain desired mean flow conditions. The extended boundary condition is applied to the benchmark problem where the meanflow around a cascade of airfoils is predicted. These illustrative computations reveal that the extended PML equations can effectively provide and maintain the target meanflow.

  • PDF

Development of Internal Inflow/outflow Steady Mean Flow Boundary Condition Using Perfectly Matched Layer for the Prediction of Turbulence-cascade Interaction Noise (난류-캐스케이드 상호작용 소음 예측을 위한 Perfectly Matched Layer을 이용한 내부 입/출구 정상유동 경계조건의 개발)

  • Kim, Dae-Hwan;Cheong, Cheol-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.685-691
    • /
    • 2012
  • It is essential for the accurate time-domain prediction of broadband noise due to turbulence-cascade interaction to develop inflow/outflow boundary conditions to satisfy the following three requirements: to maintain the back ground mean flow, to nonreflect the outgoing disturbances and to generate the specified input gust. The preceding study showed that perfectly matched layer(PML) boundary condition was successfully applied to absorb the outgoing disturbances and to generate the specified gust in the time-domain computations of broadband noise due to interaction of incident gust with a cascade of flat-plates. In present study, PML boundary condition is extended in order to predict steady mean flow that is needed for the computation of noise due to interaction of incident gust with a cascade of airfoils. PML boundary condition is originally designed to absorb flow disturbances superimposed on the steady meanflow in the buffer zone. However, the steady meanflow must be computed before PML boundary condition is applied on the flow computation. In the present paper, PML equations are extended by introducing source term to maintain desired mean flow conditions. The extended boundary condition is applied to the benchmark problem where the meanflow around a cascade of airfoils is predicted. These illustrative computations reveal that the extended PML equations can effectively provide and maintain the target meanflow.

The study of moving and dissipation of floating mines due to wind forced river plume (바람영향하의 River plume에 따른 부유물체 확산 및 이동 연구)

  • Baek, Seong-Ho;Park, Kyeong-Ju
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.295-298
    • /
    • 2010
  • To find out moving and dissipation patterns of laid floating object estuary this paper has focused on forming, changing and variation of the wind forced river plume. In steady state(without external force), river can be form a bulge and downcoast alongshore current on gently sloped continental shelf. Under the downwelling wind and downcoast meanflow those river plume's patterns are similar with the steady state case except enhancement of downcoast transportation. Under the upwelling wind condition bulge linearly move to the northwest with 45 angle due to Ekman transport. It's moving speed are linear with the strength of the wind stress but moving paths are independent of that. So, in this case, floating object will be dissipate to outside as move to the upcoast.

  • PDF

An integration of process planning and scheduling in FMS (FMS 에서 공정계획을 고려한 스케쥴링)

  • Chung, Nam-Kee;Gee, Byung-Sung;Ju, Hyun-Jun
    • IE interfaces
    • /
    • v.7 no.1
    • /
    • pp.59-66
    • /
    • 1994
  • In scheduling open-field type FMS, process planning of decision making between alternate machines is taken into consideration. This idea is validated via implementing two experimental systems; One is a knowledge-based system and the other is to solve a Constraint Satisfaction Problem. The former generates some promising schedules in view of improving machine utilization, makespan and meanflow time, and the latter does in view of meeting due date.

  • PDF

Development of high performance intake silencer using swirling flow for household oxygen generators (가정용 산소발생기를 위한 스월링 유동을 이용한 고성능 흡기 소음기 개발)

  • Kim, Seong-hun;Lee, Gwang-se;Choi, Yong-bok;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.581-587
    • /
    • 2014
  • Intake silencers of high performance and with less pressure drop are developed for a household oxygen generator. First, the acoustic power of the target oxygen generator are experimentally evaluated according to ISO code. Then, the transmission loss of and the flow characteristics inside the existing intake silencer are predicted and analyzed. On a basis of these results, two intake silencers are proposed, which are designed to induce the swirling flow inside the intake silencer and thus to reduce the flow loss. The predicted TL and the pressure drop for these two new silencers are compared to the existing one, which shows that the proposed ones have higher TLs as well as less pressure drop. The reason for these improvements are explained by investigating the flow characteristics of the new silencers in detail.

  • PDF