• 제목/요약/키워드: mean torque

검색결과 191건 처리시간 0.026초

엔진-발전기 시스템 모델링 및 제어특성에 관한 실험적 연구 (An Experimental Study upon Modeling and Control of Coupled Engine and Generator System)

  • 송승호;정세종;오정훈;함윤영;최용각;이광희
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.163-169
    • /
    • 2003
  • Modeling of engine-generator system and its control responses are investigated using high performance generator controller. The nonlinear engine is modeled using mean torque production model based on experimental engine map. In case of diesel engine. the amount of injected fief is decided by engine controller depending on the APS(Acceleration Position Sensor) value. An electromechanical generator model contains electrical circuits and moment of inertia. The generator controller maximizes the performance of generator using decoupling and linearized current feedback control. The generator control system consists of 3-phase IGBT inverter and controller board based on 32 bit floating point DSP. Field oriented control algorithm with digital current feedback control at 10kHz sampling enabled high performance torque and speed control of induction machine. Not only the steady state but also the transient state responses can be evaluated through a batch test of the engine generator system. Developed engine and generator modeling and control can be utilized in various applications such as Series Hybrid Electric Vehicle(SHEV), engine-generator for emergency, and other hybrid generation systems.

부분분사 마이크로 축류형터빈에서의 익형각 효과에 관한 연구 (Effect of Blade Angles on a Micro Axial-Type Turbine Operated in a Low Partial Admission Rate)

  • 조수용;조봉수;조종현
    • 한국추진공학회지
    • /
    • 제11권4호
    • /
    • pp.10-18
    • /
    • 2007
  • 본 연구에 채택된 마이크로터빈은 축류형 터빈으로 2단으로 구성되어져 있으며 로터 유로에서의 평균반경이 8.4 mm이다. 이러한 소형 터빈은 마이크로 동력시스템의 드라이브로 사용되어질 수 있으며 무부하 상태에서 100,000 RPM의 회전속도에 도달한다. 하지만 낮은 부분분사에서 작동하므로 동익과 정익의 익형각에 따라 성능의 변화가 발생되어진다. 따라서 노즐, 정익, 동익의 익형각을 변경하면서 비출력과 총 비토오크를 측정하여 각각의 성능을 분석하였다. 성능실험의 결과에 의하면 동익 익형각의 변화에 따라 총 비토오크가 15%까지 변경되어졌으며 최적의 입사각은 $10.3^{\circ}$ 정도였다.

Effect of surface anodization on stability of orthodontic microimplant

  • Karmarker, Sanket;Yu, Won-Jae;Kyung, Hee-Moon
    • 대한치과교정학회지
    • /
    • 제42권1호
    • /
    • pp.4-10
    • /
    • 2012
  • Objective: To determine the effect of surface anodization on the interfacial strength between an orthodontic microimplant (MI) and the rabbit tibial bone, particularly in the initial phase aft er placement. Methods: A total of 36 MIs were driven into the tibias of 3 mature rabbits by using the self-drilling method and then removed aft er 6 weeks. Half the MIs were as-machined (n = 18; machined group), while the remaining had anodized surfaces (n = 18; anodized group). The peak insertion torque (PIT) and the peak removal torque (PRT) values were measured for the 2 groups of MIs. These values were then used to calculate the interfacial shear strength between the MI and cortical bone. Results: There were no statistical differences in terms of PIT between the 2 groups. However, mean PRT was significantly greater for the anodized implants ($3.79{\pm}1.39$ Ncm) than for the machined ones ($2.05{\pm}1.07$ Ncm) (p < 0.01). The interfacial strengths, converted from PRT, were calculated at 10.6 MPa and 5.74 MPa for the anodized and machined group implants, respectively. Conclusions: Anodization of orthodontic MIs may enhance their early-phase retention capability, thereby ensuring a more reliable source of absolute anchorage.

타워크레인용 선회감속기의 캐리어 피로 수명 예측 (Fatigue Life Prediction of the Carrier of Slewing Reducer for Tower Crane)

  • 조승제;박영준;한정우;이근호
    • 한국기계가공학회지
    • /
    • 제14권3호
    • /
    • pp.131-140
    • /
    • 2015
  • The purpose of this study is to predict the fatigue life of a planet carrier of a slewing reducer for a tower crane. To predict the fatigue life of the carrier, the inertia endurance test was carried out, and then the input torque profile for the reducer was obtained. The load profile acting on the planet pins that assembled the carrier was calculated from the measured input torque profile using commercial gearbox analysis software. The stress profiles of the carrier weak points were analyzed from the calculated load profile and boundary conditions using commercial FE software, and the stress cycles were determined using the rainflow counting method. Finally, the fatigue life of the carrier was predicted using the equivalent stress range by considering the effect of mean stress, and an S-N curve was drawn up using the GL guideline and the cumulative damage law.

Acute beetroot juice supplementation does not attenuate knee extensor exercise muscle fatigue in a healthy young population

  • Lee, Seungyong;Abel, Mark G.;Thomas, Travis;Symons, T. Brock;Yates, James W.
    • 운동영양학회지
    • /
    • 제23권1호
    • /
    • pp.55-62
    • /
    • 2019
  • [Purpose] The effect of acute nitrate supplementation on muscle fatigue is largely unknown. This study aimed to evaluate the effect of acute nitrate supplementation on muscle fatigue. [Methods] Thirty-five recreationally active subjects consumed 140 ml of beetroot (BR) juice (nitrate: 8 mmol·d-1) or placebo (PL) 12 and 2.5 hours before two exercise sessions. Peak torque was measured during 50 repetitions, at maximal effort, and during concentric knee extensions at 90°·s-1. Blood pressure (BP) was recorded pre- and post-exercise. [Results] Peak torque, maximum work, rate of fatigue, and rate of work fatigue were similar between the BR and PL conditions. Post-exercise diastolic BP (BR: 67.2 ± 9.8 vs. PL: 64.5 ± 7.9 mmHg, p < 0.05) and mean arterial pressure (BR: 91.6 ± 9.3 vs. PL: 88.8 ± 8.2 mmHg, p < 0.05) were higher with BR supplementation. [Conclusion] These findings suggest that the acute intake of BR juice had no effect on knee extensor muscle strength or fatigue but increased BP in a healthy recreationally active population.

Influence of Implant Surface Coated with pH Buffering Agent on Early Osseointegration

  • Kang, Joo Hyun;Kim, Su-Kyoung;Pae, Hyung Chul;Park, Jin Young;Cha, Jae-Kook;Choi, Seong-Ho
    • Journal of Korean Dental Science
    • /
    • 제11권1호
    • /
    • pp.5-13
    • /
    • 2018
  • Purpose: Surface treatment with pH buffering agent has been developed to achieve higher and faster osseointegration. The aim of this study was to evaluate its influence by measuring removal torque and analyzing histological characteristics. Materials and Methods: Titanium implants with following surfaces were used in this study: sand-blasted acid-etched (SA) surface (SA group as control I group), SA surface in calcium chloride aqueous solution (CA group as control II group) and SA surface coated with pH buffering agent (pH group as test group). Removal torque test after 2 weeks and bone-to-implant contact and bone area analyses at 2 and 4 weeks were performed. Result: The rotational torque values at 2 weeks were significantly higher in pH group ($107.5{\pm}6.2Ncm$, P<0.05). The mean values of bone-to-implant contact at 2 and 4 weeks were both higher in pH group ($93.0%{\pm}6.4%$ at 2 weeks, $88.6%{\pm}5.5%$ at 4 weeks) than in SA group ($49.7%{\pm}9.7%$ at 2 weeks, $47.3%{\pm}20.1%$ at 4 weeks) and CA group ($73.7%{\pm}12.4%$ at 2 weeks, $72.5%{\pm}10.9%$ at 4 weeks) with significances (P<0.05). The means of bone area showed significantly higher numbers in pH group ($39.5%{\pm}11.3%$ at 2 weeks, $71.9%{\pm}10.9%$ at 4 weeks, P<0.05). Conclusion: Our findings demonstrated that surface modification with pH buffering agent improved early osseointegration with superior biomechanical property.

부분분사에서 작동하는 소형터빈에서 두 번째 단의 효과에 관한 연구 (A Study of the Second Stage Effect on a Partially Admitted Small Turbine)

  • 조종현;조봉수;최상규;조수용
    • 한국항공우주학회지
    • /
    • 제36권9호
    • /
    • pp.898-906
    • /
    • 2008
  • 본 연구에 적용된 터빈은 2단으로 구성되며, 첫 번째 단에는 축류형 터빈이 적용되고 두 번째 단에는 반경류형 터빈이 적용되었다. 축류형 터빈에서 동익의 평균반경은 70mm 이며, 반경류형 터빈의 외경은 입구에서 68mm였다. 실험에서 반경류형 터빈의 경우에는 두 개의 다른 형태가 적용되었으며, 최적의 설계변수를 확인하기 위하여 노즐의 각도를 3가지로 변경하면서 실험을 수행하였다. 터빈의 형상에 따른 성능평가를 위하여 총비토오크를 기준으로 비교하였다. 실험의 결과에서 낮은 부분분사에서 작동하면서 고토오크를 얻기 위한 소형터빈의 성능에는 노즐 각도가 가장 중요한 설계변수임을 보여주었다. 부분분사율이 3.4%이면서 노즐의 분사각도가 $75^{\circ}$인 경우에 두 번째 단에 반경류형 터빈을 장착하였을 때 총비토오크는 13%향상하는 결과를 보여주었다.

Comparison of mechanical and biological properties of zirconia and titanium alloy orthodontic micro-implants

  • Choi, Hae Won;Park, Young Seok;Chung, Shin Hye;Jung, Min Ho;Moon, Won;Rhee, Sang Hoon
    • 대한치과교정학회지
    • /
    • 제47권4호
    • /
    • pp.229-237
    • /
    • 2017
  • Objective: The aim of this study was to compare the initial stability as insertion and removal torque and the clinical applicability of novel orthodontic zirconia micro-implants made using a powder injection molding (PIM) technique with those parameters in conventional titanium micro-implants. Methods: Sixty zirconia and 60 titanium micro-implants of similar design (diameter, 1.6 mm; length, 8.0 mm) were inserted perpendicularly in solid polyurethane foam with varying densities of 20 pounds per cubic foot (pcf), 30 pcf, and 40 pcf. Primary stability was measured as maximum insertion torque (MIT) and maximum removal torque (MRT). To investigate clinical applicability, compressive and tensile forces were recorded at 0.01, 0.02, and 0.03 mm displacement of the implants at angles of $0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$, and $40^{\circ}$. The biocompatibility of zirconia micro-implants was assessed via an experimental animal study. Results: There were no statistically significant differences between zirconia micro-implants and titanium alloy implants with regard to MIT, MRT, or the amount of movement in the angulated lateral displacement test. As angulation increased, the mean compressive and tensile forces required to displace both types of micro-implants increased substantially at all distances. The average bone-to-implant contact ratio of prototype zirconia micro-implants was $56.88{\pm}6.72%$. Conclusions: Zirconia micro-implants showed initial stability and clinical applicability for diverse orthodontic treatments comparable to that of titanium micro-implants under compressive and tensile forces.

승용 디젤 엔진의 실린더 차이 압력을 이용한 IMEP 추정 및 제어 알고리즘 개발 (Development of IMEP Estimation and Control Algorithm Using In-Cylinder Difference Pressure for Passenger Diesel Engines)

  • 정재성;오승석;박인석;선우명호
    • 대한기계학회논문집B
    • /
    • 제36권9호
    • /
    • pp.915-921
    • /
    • 2012
  • 이 연구에서는 실린더 압력과 모터링 압력의 차이인 차이 압력(difference pressure)을 이용하여 IMEP를 추정하는 방법을 제안하고, 추정된 IMEP를 $IMEP_{diff}$로 정의하였다. $IMEP_{diff}$는 차이 압력이 연소 시작 시점에서 연소 종료 시점까지만 존재하는 압력이라는 사실에 기반하여 이론적인 IMEP 계산식의 연산 구간을 최적화한 것으로 IMEP와 비교 시 $R^2$ 0.9955의 높은 선형관계를 보였다. 또한 이론적인 IMEP 계산 방법과 비교하여 21 %의 실린더 압력 데이터 및 31 %의 계산량만으로 IMEP 획득이 가능하여 실시간 제어에 용이하다. $IMEP_{diff}$ 추정 및 제어 성능은 엔진 실험을 통하여 검증하였으며, $IMEP_{diff}$ 제어를 통하여 실린더 간 토크 편차 감소를 확인하였다.

발레 무용수의 Fouette en dehors동작 시 하지분절에 대한 생체역학적 분석 (A Biomechanical Analysis of Lower Extremity Segment dur ing the Fouette en dehors Performed by Ballet Dancers)

  • 이진;오정환
    • 한국운동역학회지
    • /
    • 제22권1호
    • /
    • pp.43-53
    • /
    • 2012
  • The purpose of this study was to quantitatively examine the biomechanical variables of Fouette turns for expert and beginner ballet dancers and to determine the difference in the variables between the two groups. sixteen female ballet dancers participated in this study. They were divided into an expert group(age, $25.38{\pm}1.92$ years; height, $168.38{\pm}4.66$ cm; mass, $49.63{\pm}4.41$ kg) and a beginner group(age, $20.88{\pm}1.13$ years; height, $161.63{\pm}7.42$ cm; mass, $48.88{\pm}3.64$ kg) depending on their ballet experience. Descriptive data were expressed as mean ${\pm}$ standard deviation (SD) for all variables including the duration, displacement of the center of the body, velocity of the center of the body, angle of the body segments, angular velocity of the body segments, ground reaction force, lower extremity torque, muscle activity, body weight, age, and body mass. An independence t-test was conducted to determine how the following variables differed between the beginners and experts: duration, displacement of the center of the body, velocity of the center of the body, angle of the body segments, angular velocity of the body segments, ground reaction force, lower extremity torque, and muscle activity. All comparisons were made at the p<0.05 significance level. The results show that the experts scored high on the biomechanical variables, although all the variables were not significant. Significant differences were found in the angle of body segments, angular velocity of the body segments, lower extremity torque, and muscle activity(p<0.05). The findings of this study demonstrate that the experts have the required skill to make an improved Fouette turn. The findings may also help ballet dancers to learn and understand the Fouette turn.