• Title/Summary/Keyword: mean ionic activity coefficient

Search Result 2, Processing Time 0.014 seconds

Activity coefficients of Solvents and Ions in Electrolyte Solutions (전해질 용액에서 용매 및 이온의 활동도 계수)

  • Shim, Min-Young;Kim, Ki-Chang
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.185-194
    • /
    • 2000
  • In this work we measured the total pressure of the aqueous solutions and the methanol-water solutions dissolved with inorganic salts, at $25^{\circ}C$. In organic electrolytes used in this work were $K_2SO_4$ and $(NH_4)_2SO_4$. Using the measured vapour pressures the activity coefficient of solvents and the mean ionic activity coefficient were obtained through thermodynamic relations. The activity coefficients of solvent and the mean ionic activity coefficirnt obtained in this work were fitted with Macedo's model and Acard's model. Both two models were good agreeable to the vapor pressure and the mean ionic activity coefficient for the electroyte aqueous solutions. For electrolyte /methanol/water solutions, Macedo's model had much deviation from experimental data, while Acard's model showed a good agreement with experimental data.

  • PDF

Calculation of the Activity Coefficients of Ions in Weak Electrolyte Solutions (묽은 전해질용액에서 이온의 활동도계수 계산)

  • Lee, Man-Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.27 no.5
    • /
    • pp.9-13
    • /
    • 2018
  • The equilibrium constant of a chemical reaction is related to the standard Gibbs free energy change. Since equilibrium constant is defined as the ratio of the activities of the chemical species, it is necessary to consider the non-ideal behavior of the solutes as ionic strength of the solution increases. In this paper, the derivation of Debye-$H{\ddot{u}}ckel$ limiting law and its modification by which the activity coefficient of an ion can be calculated was explained. Moreover, the method to obtain the activity coefficient of an ion from the experimentally determined mean activity coefficients of an electrolyte was explained.