Journal of the Korea Institute of Military Science and Technology
/
v.17
no.4
/
pp.551-559
/
2014
The influence of the battle damage hole on the velocity and vorticity flow field have been studied by using particle image velocimetry. Time averaged velocity and vorticity vector fields in the vicinity of jet are presented. The perforated damage hole on a wing created from a hit by anti-air artillery was modeled as a 10% chord size hole which positioned at quarter chord. At low angles of attack, the vorticity in the forward side of the jet is cancelled due to mixing with the wing surface boundary layer. Stretching of vorticity in the backside of the jet generates a semi-cylindrical vortical layer that enclosing a domain with slow moving reverse flow. Conversely, at higher the angles of attack, the jet vorticity advected away from the wing surface and remains mostly confined to the jet. The mean flow behind the jet has a wake-like structure.
The dynamic particle image velocimetry (PIV) is consisted of a high frequency pulse laser, high speed cameras and a timing controller. The three velocity components of flow downstream of an axial flow fan for PC cooling system are measured using the dynamic PIV system. An Axial flow fan has seven blades of 72 mm in diameter. The rotating speed is 1800 rpm. The downstream flow is visualized by smoke particles of about $0.3-1\;{\mu}m$ in diameter. The three-dimensional instantaneous velocity fields are measured at three downstream planes. The swirl velocity component was diffused downstream and the change in time-mean vorticity distribution downstream was also discussed. The spatio-temporal change in axial velocity component with the blades passing is recognized by the instantaneous vector maps. And the dynamic behavior of vorticity moving with the rotating blades is discussed using the unsteady vorticity maps.
This work investigates Reynolds number Re (= 50 - 200) effects on the flows around a single cylinder and the two tandem (center-to-center spacing L⁎= L/D = 4) cylinders, each of a diameter D. Vorticity structures, Strouhal numbers, and time-mean and fluctuating forces are presented and discussed. For the single cylinder, with increasing Re in the range examined, the vorticity magnitude, Strouhal number and fluctuating lift all monotonically rise but time-mean drag, vortex formation length, and lateral distance between the two rows of vortices all shrink. For the two tandem cylinders, the increase in Re leads to the formation of three distinct flows, namely reattachment flow (50 ≤ Re ≤ 75), transition flow (75 < Re < 100), and coshedding flow (100 ≤ Re ≤ 200). The reattachment flow at Re = 50 is steady. When Re is increased from 75 to 200, the Strouhal number of the two cylinders, jumping from 0.113 to 0.15 in the transition flow regime, swells to 0.188. The two-cylinder flow is more sensitive to Re than the single cylinder flow. Fluctuating lift is greater for the downstream cylinder than the upstream cylinder while time-mean drag is higher for the upstream cylinder than for the other. The time-mean drags of the upstream cylinder and single cylinder behaves similar to each other, both declining with increasing Re.
Park, Jang-Hee;Lee, Dae-Keun;Shin, Hyun-Dong;Kim, Moon-Uhn
한국연소학회:학술대회논문집
/
2003.12a
/
pp.185-193
/
2003
Basic flow fields of two dimensional V flames were examined as a preliminary work to study the instability of premixed flame with vorticity generation. Laminar premixed propane and methane flame were anchored by electrically heated wire to make two dimensional V flames. Flow fields were measured mainly by PIV(Particle Image Velocimetray) and the results were compared with those obtained by LDV(Laser Doppler Velocimetry) to confirm their reliability. Because the curvatures of V flames are so small, V flames were locally assumed to be inclined planar flames in gravitational field. The measured flow fields were locally compared with those of analytical solutions, which showed the qualitatively similar results. In downstream region, the vorticity fields were nearly constant except region near the center line, which support the assumption of locally one dimensional flame. Besides it was tried to find experimentally the similarity of flow fields in downstream region. Finally, stability diagram of propane and methane flames were drawn for the equivalence ratio less than one and the wide range of mean velocity.
Journal of Advanced Marine Engineering and Technology
/
v.25
no.6
/
pp.1195-1202
/
2001
The flow characteristics in a bifurcated duct are investigated experimentally. Physical properties such as mean velocity vectors, mean x-y stress distributions, mean vorticity and total pressure distributions are Obtained for three different Reynolds numbers(578, 620, 688) Using PIV measurements and CFD analysis. Also, three different rates of discharge Q=26.11 l/min, Q=28.11 $\ell$/min, Q=31.17 $\ell$/min) were selected foy experimental conditions. The results of this study would be useful to the engineer in designing the flow systems for heating, ventilation, air conditioning and wastewater purification plants.
Journal of the Korean Society of Fisheries and Ocean Technology
/
v.55
no.3
/
pp.252-263
/
2019
In order to understand the tidal current and mean flow at the west channel of Yeoja Bay in the South Sea of Korea, numerical model experiments and vorticity analysis were carried out. The currents flow north at flood and south at ebb respectively and have the reversing form in the west channel. Topographical eddies are found in the surroundings of Dunbyong Island in the east of the channel. The flood currents flow from the waters near Naro Islands through the west channel and the coastal waters near Geumo Islands through the east channel. The ebb currents from the Yeoja Bay flow out along the west and the east channels separately. The south of Nang Island have weak flows because the island is located in the rear of main tidal stream. Currents are converged at ebb and diverged at flood in the northwest of Jeokgum Island. Tidal current ellipses show reversing form in the west channel but a kind of rotational form in the east channel. As the results of tide induced mean flows, cyclonic and anticyclonic topographical eddies at the northern tip but eddies with opposite spin at the southern tip are found in the west channel of Yeoja Bay. The topographical eddies around the islands and narrow channels are created from the vorticity formed at the land shore by the friction between tidal currents and the west channel.
Conical vortices on roof corners of a prismatic low-rise building have been investigated by using the PIV(Particle Image Velocimetry) technique. The Reynolds number based on the free stream velocity and model height was $5.3{\times}10^3$. Mean and instantaneous vector fields for velocity, vorticity, and turbulent kinetic energy were measured at two vertical planes and for two different flow angles of $30^{\circ}$ and $45^{\circ}$. The measurements provided a clear view of the complex flow structures on roof corners such as a pair of counter rotating conical vortices, secondary vortices, and tertiary vortices. They also enabled accurate and easy measurement of the size of vortices. Additionally, we could easily locate the centers of the vortices from the ensemble averaged velocity fields. It was observed that the flow angle of a $30^{\circ}$ produces a higher level of vorticity and turbulent kinetic energy in one of the pair of vortices than does the $45^{\circ}$ flow angle.
Conical vortices generated at the corner regions of large-span flat roofs have been investigated by using the Particle Image Velocimetry (PIV) technique. Mean and instantaneous vector fields for velocity, vorticity, and streamlines were measured at three visual planes and for two different flow angles of $15^{\circ}$. The results indicated that conical vortices occur when the wind is not perpendicular to the front edge. The location of the leading edge corresponding to the negative peak vorticity and maximum turbulent kinetic energy was found at the center of the conical vortex. The wind pressure reaches the maximum near the leading edge roof corner, and a triangle of severe suctions zone appears downstream. The mean pressure in uniform flow is greater than that under turbulent flow condition, while a significant increase in the fluctuating wind pressure occurs in turbulent streams. From its emergence to stability, the shape of the vortex cross-section is nearly elliptical, with increasing area. The angle that forms between the vortex axis and the leading edge is much smaller in turbulent streams. The detailed flow structures and characteristics obtained through FLUENT simulation are in agreement with the experimental results. The three dimensional (3-D) structure of the conical vortices is clearly observed from the comprehensive arrangement of several visual planes, and the inner link was established between the vortex evolution process, vortex core position and pressure distribution.
Bae, Ju-Hyun;Lee, Kwang-Ho;Jung, Uk Jin;Kim, Do-Sam
Journal of Korean Society of Coastal and Ocean Engineers
/
v.30
no.6
/
pp.270-285
/
2018
The behavior of wave-induced pore water pressure inside the rubble mound and seabed, and the resultant structure failure are investigated, which are used in design of the composite breakwater representing the coastal and harbor structures. Numerical simulation techniques have been widely used to assess these behaviors through linear and nonlinear methods in many researches. While the combination of strongly nonlinear analytical method and turbulence model have not been applied yet, which can simulate these characteristics more accurately. In this study, olaFlow model considering the wave-breaking and turbulent phenomena is applied through VOF and LES methods, which gives more exact solution by using the multiphase flow analytical method. The verification of olaFlow model is demonstrated by comparing the experimental and numerical results for the interactions of regular waves-seabed and regular waves-composite breakwater-seabed. The characteristics of the spatial distributions of horizontal wave pressure, excess-pore-water pressure, mean flow velocity and mean vorticity on the upright caisson, and inside the rubble mound and seabed are discussed, as well as the relation between the mean distribution of vorticity size and mean turbulent kinetic energy. And the stability of composite breakwater are also discussed.
The mear field structure of round turbulent jets with initially asymmetric velocity distributions is investigated experimentally. Experiments are carried out using a constant temperature hot-wire anemometry system to measure streamwise velocity in the jets. The measurements are undertaken across the jet at various streamwise stations in a range starting from the jet exit plane and up to a downstream location of twelve diameters. The experimental results include the distributions of mean and instantaneous velocities, vorticity field, turbulence intensity, and the Reynolds shear stresses. The asymmetry of the jet exit plane was obtained by using circular cross-section pipes with a bend upstream of the exit. There pipes used here include a straight pipe, and 90 and 160 degree-bend pipes. Therefore, at the upstream of the upstream of the pipe exit, secondary flow through the bend mean streamwise velocity distribution could be controlled by changing the curvature of pipes. The jets into the atmosphere have two levels of initial velocity skewness in addition to an axisymmetric jet from a straight pipe. In case of the curved pipe, a six diameter-long straight pipe section follows the bend upstream of the exit. The Reynolds number based on the exit bulk velocity is 13,400. The results indicate that the near field structure is considerably modified by the skewness of an initial mean velocity distribution. As the skewness increases, the decay rate of mean velocity at the centerline also increases.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.