• Title/Summary/Keyword: mean bed shear stress

Search Result 13, Processing Time 0.021 seconds

Estimation of Bed Form Friction Coefficients using ADCP Data

  • Lee, Minjae;Park, Yong Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.63-63
    • /
    • 2021
  • Bed shear stress is important variable in river flow analysis. The bed shear stress has an effects on bed erosion, sediment transport, and mean flow characteristics. Quadratic formula to estimate bed shear stress is widely used, 𝜏=𝜌cfu|u| in which friction coefficient, cf, needs to be assigned to numerical models. The aim of this study is to estimate Chezy coefficient using bathymetry data measured by ADCP. Bed form geometry variables will be estimated form bed profile, then Chezy coefficient will be determined using estimated bed form geometry variables in order to set friction coefficient to numerical model. From the probability density function obtained from the bathymetry data, Chezy coefficient will be randomly generated since Chezy coefficient is not uniform over the space and it does not depend on spatial variables such as water depth and distance from river bank. Numerical test will be performed to find to demonstrate randomly extracted Chezy coefficient is appropriate. The result of this study is valuable in that the friction coefficient is estimated in consideration of the bed profile, and as a result, uncertainty of the friction coefficient can be reduced.

  • PDF

Bottom Friction of Combined Wave-Current Flow (천해파와 해류의 해저면 마찰력)

  • 유동훈;김인호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.2
    • /
    • pp.177-188
    • /
    • 2001
  • The paper presents the method to estimate the bottom shear stress driven by waves and current on rough turbulent flow. Parameter adjusting technique is suggested for the computation of bed shear stress driven by uni-directional flow, and the value ofpararneter is determined by comparing the computational results against Bijker's laboratory data. For the computation of combined flow bottom shear stress, two methods are presented; one is the modified Bijker approach (BYO Model) and the other is the modified Fredsoe approach (FY Model), both of which are refined by the present writers. BYO model is again refined in the computation of maximum shear stress, and the final version is tested against Bijkcr's laboratory data.

  • PDF

Bed Load Transport by Waves and Current (파와 해류에 의한 소류사 이동)

  • 유동훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.3
    • /
    • pp.257-264
    • /
    • 1995
  • Various factors are investigated on the bed load transport driven by waves and current, and proper forms of bed load transport formulas mainly used in river hydraulics are chosen for the estimation of combined flow bed load transport after considering the additional factors. The BYO Model is employed for the computation of maximum bed shear stress and mean bed shear stress of the combined flow. The friction factor of uni-directional flow is estimated by using modified Keulegan equation, and equivalent roughness height is determined by obtaining correct answer for the bed shear stress of uni-directional flow. Empirical constant in each bed load formula is determined by applying it to Bijker's laboratory data of bed load transport by waves and current and the formulas obtained are discussed on their final forms with the values of empirical constants.

  • PDF

A Study on the Bed-Load Transport Rate (소류사량에 관한 연구)

  • Kang, Ju-Bok;Jeong, Yeon-Tae;Kim, Won-Gyu
    • Water for future
    • /
    • v.22 no.2
    • /
    • pp.191-200
    • /
    • 1989
  • A method is presented which enables the computation of the bed-load transport rate as the product of particle velocity and bed-load Concentration. In this study, it is assumed that particle velocity is proportinal to the flow velocity near the particle and the apperance frequency of the component of the fluctuating velocity of turbulent flow close to bed is normally distributed, and the particle velocity is expressed by mean flow velocity near the particle and the function of bed shear stress. Engelund formula, which is checked indirectly to be proper to use in this study, is employed to estimate the effective shear velocity. And the dffective bed shear stress acting on particle is obtained by that shear velocity. Ashida-Michiue's formula is used to get the concentration of bed-load. Experimental data for bed-load is compared with the results of other studies and the transport fornula suggested in this paper gives results which are in good accordance with other's experimental data excepting the results obtained the case of comparatively small bed shear stress.

  • PDF

Modification of Wind Generated Coastal Circulation Model (풍성연안순환모델의 수정)

  • Lee, J. W.;Shin, S. H.;Kim, J. Y.;Yang, S. Y.
    • Journal of Korean Port Research
    • /
    • v.9 no.2
    • /
    • pp.25-38
    • /
    • 1995
  • The wind generated circulation model describes the phenomenon based on the following physical assumptions: a) As the horizontal dimension of the flow domain is several orders of magnitude larger than vertical dimension, nearly horizontal flow is realistic. b) The time taken for circulation to develop may effect on the flow domain of the earth's rotation, the contribution of the Coriolis force. c) A flow domain of large dimension results in quite large Reynolds number and the Reynolds stresses are approximated by the turbulent mean velocity gradient. d) The circulation is forced by the shear stresses on the water surface exercised by the wind. Modification made to the depth average approximation of the convective terms and the bed shear stress terms by adopting a certain distribution of current over the depth and laboratory measurements for the bed shear expression. Modification circulation patterns, energy evolution and surface profile gave the significant differences comparing with the classical model results. The modified model results in higher free surface gradients balancing both the free surface shear and the bed shear and consequently to higher surface profiles along the coast.

  • PDF

Validation of Assessment for Mean Flow Field Using Spatial Averaging of Instantaneous ADCP Velocity Measurements (ADCP 자료의 공간평균을 이용한 평균유속장 산정에 대한 검증)

  • Kim, Dong-Su;Kang, Boo-Sik
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.107-118
    • /
    • 2011
  • While the assessment of mean flow field is very important to characterize the hydrodynamic aspect of the flow regime in river, the conventional methodologies have required very time-consuming efforts and cost to obtain the mean flow field. The paper provides an efficient technique to quickly assess mean flow field by developing and applying spatial averaging method utilizing repeatedly surveyed acoustic Doppler current profiler(ADCP)'s cross-sectional measurements. ADCP has been widely used in measuring the detailed velocity and discharge in the last two decades. In order to validate the proposed spatial averaging method, the averaged velocity filed using the spatial averaging was compared with the bench-mark data computed by the time-averaging of the consistent fix-point ADCP measurement, which has been known as a valid but a bit inefficient way to obtain mean velocity field. The comparison showed a good agreement between two methods, which indicates that the spatial averaging method is able to be used as a surrogate way to assess the mean flow field. Bed shear stress distribution, which is a derived hydrodynamic quantity from the mean velocity field, was additionally computed by using both spatial and time-averaging methods, and they were compared each other so as to validate the spatial averaging method. This comparison also gave a good agreement. Therefore, such comparisons proved the validity of the spatial averaging to quickly assess mean flow field. The mean velocity field and its derived riverine quantities can be actively used for characterizing the flow dynamics as well as potentially applicable for validating numerical simulations.

Flume experiments for turbulent flow around a spur dike (수제 주위의 난류 특성 변화에 대한 실험 연구)

  • Jeon, Jeongsook;Kang, Seokkoo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.8
    • /
    • pp.707-717
    • /
    • 2016
  • In this study we carried out laboratory experiments to investigate the three-dimensional turbulent flows around a spur dike installed in a straight open channel flume. The experiments are conducted under the two different Froude numbers, 0.100 and 0.185. The three-dimensional instantaneous velocities are measured using the Acoustic Doppler Velocimetry (ADV) to obtain the time-averaged velocities and the turbulence stresses. The measured flow field reveal the existence of the recirculation zones downstream of the dike, which is characterized by high turbulence stresses near its boundaries. The results show that although the overall mean flow patterns between the low and high Froude number cases are very similar to each other, there exist moderate changes in the maximum dimensionless turbulence stresses and the maximum dimensionless bed shear stress with the increase of the Froude number.

Experimental Study on the Shearing and Crushing Characteristics of Subaqueous Gravels in Gravel Bed River (수중 자갈의 전단 및 파쇄 특성에 관한 실험적 연구)

  • Kim, So-Ra;Jeong, Sueng-Won;Lee, Gwang-Soo;Yoo, Dong-Geun
    • Journal of the Korean earth science society
    • /
    • v.42 no.2
    • /
    • pp.164-174
    • /
    • 2021
  • The study examines the shearing and crushing characteristics of land-derived subaqueous granular materials in a gravel-bed river. A series of large-sized ring shear tests were performed to examine the effect of shear time and shear velocity on the shear stress characteristics of aquarium gravels with a 6-mm mean grain size. Three different shear velocities (i.e., 0.01, 0.1, and 1 mm/sec) were applied to measure the shear stress under the drained (long-term shearing) and undrained (short-term shearing) conditions. Different initial shear velocities, i.e., 0.01→0.1→1 mm/sec and 0.1→0.01→1 mm/sec, were considered in this study. The test results show that the grain crushing effect is significant regardless of drainage conditions. The shear stress of coarse-grained materials is influenced by initial shear velocities, regardless of the drainage conditions. In particular, particle breakage increases as grain size increases. The shearing time and initial shear velocity are the primary influencing factors determining the shear stress of gravels. The granular materials may be broken easily into particles through frictional resistance, such as abrasion, interlocking and fracture due to the particle-particle interaction, resulting in the high mobility of granular materials in a subaqueous environment.

Numerical Analysis on the Turbulence Patterns in The Scour Hole at The Downstream of Bed Protection (하상보호공 직하류부 세굴공의 난류양상에 관한 수치해석적 연구)

  • Lee, Jaelyong;Park, Sung Won;Yeom, Seongil;Ahn, Jungkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.20-26
    • /
    • 2019
  • Where hydraulic structures are to be installed over the entire width of a river or stream, usually a bed protection structure is to be installed. However, a local scour occurs in which the river bed downstream of the river protection system is eroded due to the influence of the upstream flow characteristics. This local scour is dominant in the flow and turbulence characteristics at the boundary of the flow direction and in the material of the bed materials, and may gradually become dangerous over time. Therefore, in this study, we compared the turbulence patterns in the local scour hole at the downstream of the river bed protection with the results of the analysis of the mobile bed experiment, and compared with the application of OpenFoam, a three dimensional numerical analysis model. The distribution of depth-averaged relative turbulence intensities along the flow direction was analyzed. In addition to this result, the stabilization of scour hole was compared with the bed shear stress and Shields parameter, and the results were compared by changing the initial turbulent flow conditions. From the results, it was confirmed that the maximum depth of generation of the three-stage was dominantly developed by the magnitude of depth-averaged relative turbulence intensity rather than the mean flow velocity. This result also suggests that design, construction or gate control are needed to control the depth-averaged relative turbulence intensities in order to reduce or prevent the local scour faults that may occur in the downstream part of the bed protection.

Estimating Critical Stream Power by the Distribution of Gravel-bed Materials in the Meandering River (만곡하천의 자갈하상재료 분포에 따른 한계수류력 평가)

  • Shin, Seung-Sook;Park, Sang-Deok;Lee, Seung-Kyu;Ji, Min-Gyu
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.2
    • /
    • pp.151-163
    • /
    • 2012
  • The distribution of gravel-bed materials in mountainous river is formed by the process of deposition and transportation of sediment responding to stream power of the latest flood that is over the certain scale. The particle size of bed material was surveyed in the longitudinal points of river and detail points of a specific meandering section and used to estimate the critical velocity and stream power. Yang's critical unit stream power and Bagnold's critical stream power for gravel-bed materials increased with the distance from downstream to upstream. Dimensionless shear stress based on the designed flood discharge in Shields diagram was evaluated that the gravel-bed materials in most survey points may be transported as form of bedload. The mean diameter in the meandering section was the biggest size in first water impingement point of inflow water from upstream and the second big size in second water impingement point by reflection flow. The mean diameters were relatively the small sizes in points right after water impingement. The range of mean critical velocity was 0.77~2.60 m/s and critical unit stream power was big greatly in first water impingement point. The distribution of critical stream power, range of 7~171 $W/m^2$, was shown that variation in longitudinal section was more obvious than that of cross section and estimated that critical stream power may be affected greatly in first and second water impingement point.