• Title/Summary/Keyword: mean annual flood

Search Result 49, Processing Time 0.027 seconds

The study of Application of Drought Index Using Measured Soil Moisture at KoFlux Tower (KoFlux 타워에서 관측된 토양수분 값을 이용한 가뭄지수 활용에 관한 연구)

  • Kim, Sooyoung;Jo, Hwan Bum;Lee, Seung Oh;Choi, Minha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.541-549
    • /
    • 2010
  • While the number of rainy days is decreasing, the mean annual precipitation is increasing due to abnormal climate changes caused by the global warming in Korea. Owing to the biased-concentration of rainfall during specific short terms, not only flood but also drought becomes more and more serious. From the literature, it is easily found that previous studies about flood have been intensively conducted. However, previous studies about drought have been performed rarely. This study conducted the comparison between two representative drought indexes calculated from soil moisture and precipitation. Study area was Haenam-gun, Jeollanam-do in Korea. Soil Moisture Index(SMI) was calculated from soil moisture data while the Standardized Precipitation Index(SPI) and the Palmer Drought Severity Index(PDSI) were calculated from meteorological data. All monthly data utilized in this study were observed at the KoFlux Tower. After the comparative analysis, three indexes showed similar tendency. Therefore, it is thought that the drought index using soil moisture measured at the KoFlux Tower is reasonable, which is because the soil moisture is immediately affected by all the meteorological factors.

An Evaluation of Extreme Precipitation based on Local Downpour using Empirical Simulation Technique (Empirical Simulation Technique 기법을 이용한 집중호우의 극한강우 평가)

  • Oh, Tae-Suk;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.141-153
    • /
    • 2009
  • The occurrence causes of the extreme rainfall to happen in Korea can be distinguished with the typhoons and local downpours. The typhoon events attacked irregularly to induce the heavy rainfall, and the local downpour events mean a seasonal rain front and a local rainfall. Almost every year, the typhoons and local downpours that induced a heavy precipitation be generated extreme disasters like a flooding. Consequently, in this research, There were distinguished the causes of heavy rainfall events with the typhoons and the local downpours at Korea. Also, probability precipitation was computed according to the causes of the local downpour events. An evaluation of local downpours can be used for analysis of heavy rainfall event in short period like a flash flood. The methods of calculation of probability precipitation used the parametric frequency analysis and the Empirical Simulation Technique (EST). The correlation analysis was computed between annual maximum precipitation by local downpour events and sea surface temperature, moisture index for composition of input vectors. At the results of correlation analysis, there were revealed that the relations closely between annual maximum precipitation and sea surface temperature. Also, probability precipitation using EST are bigger than probability precipitation of frequency analysis on west-middle areas in Korea. Therefore, region of west-middle in Korea should prepare the extreme precipitation by local downpour events.

A Method of Rating Curve Adjustment (수위유량곡선보정방법에 대하여)

  • 박정근
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.2
    • /
    • pp.4116-4120
    • /
    • 1976
  • With the use of many rivers increased nearly to the capacity, the need for information concerning daily quantities of water and the total annual or seasonal runoff has became increased. A systematic record of the flow of a river is commonly made in terms of the mean daily discharge Since. a single observation of stage is converted into discharge by means of rating curve, it is essential that the stage discharge relations shall be accurately established. All rating curves have the looping effect due chiefly to channel storage and variation in surface slope. Loop rating curves are most characteristic on streams with somewhat flatter gradients and more constricted channels. The great majority of gauge readings are taken by unskilled observers once a day without any indication of whether the stage is rising or falling. Therefore, normal rating curves shall show one discharge for one gauge height, regardless of falling or rising stage. The above reasons call for the correction of the discharge measurements taken on either side of flood waves to the theoretical steady-state condition. The correction of the discharge measurement is to consider channel storage and variation in surface slope. (1) Channel storage As the surface elevation of a river rises, water is temporarily stored in the river channel. There fore, the actual discharge at the control section can be attained by substracting the rate of change of storage from the measured discharge. (2) Variation in surface slope From the Manning equation, the steady state discharge Q in a channel of given roughness and cross-section, is given as {{{{Q PROPTO SQRT { 1} }}}} When the slope is not equal, the actual discharge will be {{{{ { Q}_{r CDOT f } PROPTO SQRT { 1 +- TRIANGLE I} CDOT TRIANGLE I }}}} may be expressed in the form of {{{{ TRIANGLE I= { dh/dt} over {c } }}}} and the celerity is approximately equal to 1.3 times the mean watrr velocity. Therefore, The steady-state discharge can be estimated from the following equation. {{{{Q= { { Q}_{r CDOT f } } over { SQRT { (1 +- { A CDOT dh/dt} over {1.3 { Q}_{r CDOT f }I } )} } }}}} If a sufficient number of observations are available, an alternative procedure can be applied. A rating curve may be drawn as a median line through the uncorrected values. The values of {{{{ { 1} over {cI } }}}} can be yielded from the measured quantities of Qr$.$f and dh/dt by use of Eq. (7) and (8). From the 1/cI v. stage relationship, new vlues of 1/cI are obtained and inserted in Eq. (7) and (8) to yield the steady-state discharge Q. The new values of Q are then plotted against stage as the corrected steadystate curve.

  • PDF

Comparison of Plotting Position Formulas for Gumbel Distribution (Gumbel 분포에 대한 도시위치공식의 비교)

  • Kim, Soo-Young;Heo, Jun-Haeng;Shin, Hong-Joon;Kho, Youn-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.5
    • /
    • pp.365-374
    • /
    • 2009
  • Probability plotting positions are used for the graphical display of annual maximum rainfall or flood series and the estimation of exceedance probability of those values. In addition, plotting positions allow a visual examination of the fitness of probability distribution provided by frequency analysis for a given data. Therefore, the graphical approach using plotting position has been applied to many fields of hydrology and water resources planning. In this study, the plotting position formula for the Gumbel distribution is derived by using the order statistics and the probability weight moment of the Gumbel distribution for various sample sizes. And then, the parameters of plotting position formula for the Gumbel distribution are estimated by using genetic algorithm. The appropriate plotting position formulas for the Gumbel distribution are examined by the comparison of root mean square errors and biases between theoretical reduced Gumbel variates and those calculated from derived and existing plotting position formulas. As the results, Gringorten's plotting position formula has the smaller root mean square errors and biases than any other formulas.

Numerical Modeling of Circulation Characteristics in the Kwangyang Estuarine System (광양만 권역의 해수순환 수치모델 실험)

  • Kim, Baek Jin;Ro, Young Jae;Jung, Kwang Young;Park, Kwang Soon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.4
    • /
    • pp.253-266
    • /
    • 2014
  • The ECOM3D is used to study the circulation characteristics and density current from the Sumjin River runoff in the Kwangyang Estuarine System, South Sea, Korea. Annual mean value of $120m^3/s$ was imposed from the Sumjin River. The numerical model results in terms of tidal height, current and salinity field show satisfactory with skill scores over 90%. The current velocity showed the range of 1~2.5 m/s during flood and ebb phases. In particular, very strong flow occur in the narrow Channels of Noryang, Daebang and Changson exceeding over 2.0 m/s. The tidal residual currents in the various locations in the Kwangyang Estuary showed the range of 1~21 cm/s, The density-driven current through the Yeosu and Noryang Channels are about 12 cm/s and 4 cm/s, respectively. The current path through the Yeosu Channel is deflected toward west Bank. Based on budget analysis of the volume flux, the volume flux through the Yeosu Channel and the Noryang Channel were estimated to be 97.4 and $22.1m^3/s$ accounting for the 81.5% and 18.5% of total flux, respectively.

Variations of Calcium, Bicarbonate, and Cation in the Lacustrine Zone by Interannual Differences in Up-River Discharge

  • An, Kwang-Guk;Lee, Jae-Hoon;Han, Jeong-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.471-476
    • /
    • 2010
  • Monthly up-river discharge in the riverine zone analysis resulted in large interannual variations and differences in calcium ($Ca^{2+}$), bicarbonate ($HCO_3^-$), and cations in the lacustrine zone (Lz) of Daecheong Reservoir during the wet year (Wy, 1993) vs. dry year (Dy, 1994). Total up-river discharge in the Wy was four times that of the Dy, and the up-river discharge in July~August of the Wy was eight times greater than that of same period of Dy. Annual water retention time in the Lz showed large difference between the two years. Water residence time (WRT) was minimum when the up-river discharge peaked, whereas the WRT was maximum when the up-river discharge was at minimal condition. This peak discharge from the up-river on early July reduced residence time in the Lz on mid-July~late July. Monthly pattern, based on data of May~November, was similar between the two years, but, but mean retention time in the Wy was 50 days shorter than in the Dy. Such hydrology, up-river discharge, and WRT reduced $Ca^{2+}$, $HCO_3^-$, and cations in the Lz. At low up-river discharge in Wy during April~May, the cation content of Ca+Mg+Na+K averaged 1.17meq $L^{-1}$ (range=1.09-1.26meq $L^{-1}$), but as the up-river discharge increased suddenly, the values decreased. Seasonal fluctuations of $Ca^{2+}$ showed exactly same pattern with bicarbonate ion of $HCO_3^-$. The minimum $Ca^{2+}$ (0.03meq $L^{-1}$) was occurred in the early August of wet year and coincided with the minimum $HCO_3^-$. These results suggest that the magnitude of variation in $Ca^{2+}$, bicarbonate, and cations in the lacustrine zone is directly determined by the peak magnitude of up-river discharge. The magnitude of up-river discharge determined water retention time and the magnitude of ionic dilution in the lacustrine zone, resulting in functional changes of the ecosystem.

Evaluation of water quality in the Sangsa Lake under climate change by combined application of HSPF and AEM3D (HSPF 와 AEM3D를 이용한 기후변화에 따른 상사호 유역의 수질오염 부하 및 댐 내 수질 변화 특성 분석)

  • Goh, Nayeon;Kim, Jaeyoung;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.877-886
    • /
    • 2022
  • This study was carried out to analyze how the flow and water quality of the Sangsa Lake (juam control basin) change according to future climate change and what countermeasures are needed. Aquatic Ecosystem Model) was used in conjunction. As climate change scenarios, RCP (Representative Concentration Pathways) 4.5 and RCP 8.5 scenarios of AR5 (5th Assessment Report) according to the Intergovernmental Panel on Climate Change (IPCC) were used. For the climate change scenario, detailed data on the Sangsa Lake basin were used by the Korea Meteorological Administration, and after being evaluated as a correction and verification process for the 10-year period from 2012 to 2021, the present, 2025-2036, 2045- The summer period from June to August and the winter period from December to February were analyzed separately for each year by dividing it into 2056 and 2075-2086. RCP 8.5 was higher than RCP 4.5 as an arithmetic mean for the flow rate of the watershed of the superior lake for the entire simulation period, and TN and TP also showed a tendency to be higher at RCP 4.5. However, in RCP 8.5, the outflow of pollutants decreased during the dry season and the outflow of pollutants increased during the summer, indicating that the annual pollutant outflow was concentrated during the flood season, and it is analyzed that countermeasures are needed.

Topographical Change Monitoring of the Sandbar and Estimation of Suspended Solid Flux in the Nakdong River Estuary - Focused on Jinudo - (낙동강 하구역 사주지형 변동과 부유사(SS) 수송량 산정 - 진우도를 중심으로 -)

  • Lee, I.C.;Lim, S.P.;Yoon, H.S.;Kim, H.T.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.2
    • /
    • pp.70-77
    • /
    • 2008
  • In this study, to establish countermeasure from marine casualties as a basic study fur long-term prediction of topographical change around Jinudo in the Nakdong river estuary, spatio-temporal topographical change monitoring was carried out. Also, in order to estimate the deposition variations concerning SS (Suspended Solid) flux which moved at St.S1 during neap and spring tide, respectively. From the topographical monitoring, it was found that the annual mean ground level and deposition rate were 141 mm and 0.36 mm/day and all parts except the northern part of Jinudo had the active topographical changes and a tendency to annually deposit. From vertical distribution of SS net fluxes, $SS_{LH}$ (latitudinal SS net flux) during spring tide overall flows average 28 $kg/m^2/hr$ (eastward), and $SS_{LV}$ (longitudinal SS net flux) flows average 11.1 $kg/m^2/hr$ (northward). And, $SS_{LH}$ overall flows average 4.8 $kg/m^2/hr$ (eastward), and $SS_{LV}$ flows average 1.5 $kg/m^2/hr$ (northward) during neap tide similar with spring tide. The depth averaged values of the latitudinal and longitudinal SS net fluxes during spring tide were approximately 6 times higher than those during neap tide. As result of, it was considered that topographical change of southern part of Jinudo was affected by resuspension of bottom sediments due to strong current in bottom layer during flood flow.

  • PDF

Assessment of the Contribution of Weather, Vegetation and Land Use Change for Agricultural Reservoir and Stream Watershed using the SLURP model (II) - Calibration, Validation and Application of the Model - (SLURP 모형을 이용한 기후, 식생, 토지이용변화가 농업용 저수지 유역과 하천유역에 미치는 기여도 평가(II) - 모형의 검·보정 및 적용 -)

  • Park, Geun-Ae;Ahn, So-Ra;Park, Min-Ji;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.121-135
    • /
    • 2010
  • This study is to assess the effect of potential future climate change on the inflow of agricultural reservoir and its impact to downstream streamflow by reservoir operation for paddy irrigation water supply using the SLURP. Before the future analysis, the SLURP model was calibrated using the 6 years daily streamflow records (1998-200398 and validated using 3 years streamflow data (2004-200698 for a 366.5 $km^2$ watershed including two agricultural reservoirs (Geumgwang8 and Gosam98located in Anseongcheon watershed. The calibration and validation results showed that the model was able to simulate the daily streamflow well considering the reservoir operation for paddy irrigation and flood discharge, with a coefficient of determination and Nash-Sutcliffe efficiency ranging from s 7 to s 9 and 0.5 to s 8 respectively. Then, the future potential climate change impact was assessed using the future wthe fu data was downscaled by nge impFactor method throuih bias-correction, the future land uses wtre predicted by modified CA-Markov technique, and the future ve potentiacovfu information was predicted and considered by the linear regression bpowten mecthly NDVI from NOAA AVHRR ima ps and mecthly mean temperature. The future (2020s, 2050s and 2e 0s) reservoir inflow, the temporal changes of reservoir storaimpand its impact to downstream streamflow watershed wtre analyzed for the A2 and B2 climate change scenarios based on a base year (2005). At an annual temporal scale, the reservoir inflow and storaimpchange oue, anagricultural reservoir wtre projected to big decrease innautumnnunder all possiblmpcombinations of conditions. The future streamflow, soossmoosture and grounwater recharge decreased slightly, whtre as the evapotransporation was projected to increase largely for all possiblmpcombinations of the conditions. At last, this study was analysed contribution of weather, vegetation and land use change to assess which factor biggest impact on agricultural reservoir and stream watershed. As a result, weather change biggest impact on agricultural reservoir inflow, storage, streamflow, evapotranspiration, soil moisture and groundwater recharge.