• 제목/요약/키워드: mean absolute deviation

검색결과 124건 처리시간 0.026초

A comparison of neural networks to ols regression in process/quality control applications

  • Nam, Kyungdoo;Sanford, Clive C.;Jayakumar, Maliyakal D.
    • 경영과학
    • /
    • 제11권2호
    • /
    • pp.133-146
    • /
    • 1994
  • This study compares the performance of neural networks and ordinary least squares regression with quality-control processes. We examine the applicability of neural networks because they do not require any assumptions regarding either the functional from of the underlying process or the distribution of errors. The coefficient of determination($R^2$), mean absolute deviation(MAD), and the mean squared error(MSE) metrics indicate that neural networks are a viable and can be a superior technique. We also demonstrate that an assessment of the magnitude of the neural notwork input layer cumulative weights can be used to determine the relative importance of predictor variables.

  • PDF

신경회로망을 이용한 드릴공정에서의 칩 배출 상태 감시 (Chip Disposal State Monitoring in Drilling Using Neural Network)

  • 김화영;안중환
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.133-140
    • /
    • 1999
  • In this study, a monitoring method to detect chip disposal state in drilling system based on neural network was proposed and its performance was evaluated. If chip flow is bad during drilling, not only the static component but also the fluctuation of dynamic component of drilling. Drilling torque is indirectly measured by sensing spindle motor power through a AC spindle motor drive system. Spindle motor power being measured drilling, four quantities such as variance/mean, mean absolute deviation, gradient, event count were calculated as feature vectors and then presented to the neural network to make a decision on chip disposal state. The selected features are sensitive to the change of chip disposal state but comparatively insensitive to the change of drilling condition. The 3 layerd neural network with error back propagation algorithm has been used. Experimental results show that the proposed monitoring system can successfully recognize the chip disposal state over a wide range of drilling condition even though it is trained under a certain drilling condition.

  • PDF

정규 확률과정을 사용한 공조 시스템의 전력 소모량 예측에 관한 연구 (A Study on the Prediction of Power Consumption in the Air-Conditioning System by Using the Gaussian Process)

  • 이창용;송근수;김진호
    • 산업경영시스템학회지
    • /
    • 제39권1호
    • /
    • pp.64-72
    • /
    • 2016
  • In this paper, we utilize a Gaussian process to predict the power consumption in the air-conditioning system. As the power consumption in the air-conditioning system takes a form of a time-series and the prediction of the power consumption becomes very important from the perspective of the efficient energy management, it is worth to investigate the time-series model for the prediction of the power consumption. To this end, we apply the Gaussian process to predict the power consumption, in which the Gaussian process provides a prior probability to every possible function and higher probabilities are given to functions that are more likely consistent with the empirical data. We also discuss how to estimate the hyper-parameters, which are parameters in the covariance function of the Gaussian process model. We estimated the hyper-parameters with two different methods (marginal likelihood and leave-one-out cross validation) and obtained a model that pertinently describes the data and the results are more or less independent of the estimation method of hyper-parameters. We validated the prediction results by the error analysis of the mean relative error and the mean absolute error. The mean relative error analysis showed that about 3.4% of the predicted value came from the error, and the mean absolute error analysis confirmed that the error in within the standard deviation of the predicted value. We also adopt the non-parametric Wilcoxon's sign-rank test to assess the fitness of the proposed model and found that the null hypothesis of uniformity was accepted under the significance level of 5%. These results can be applied to a more elaborate control of the power consumption in the air-conditioning system.

Clinical Validation of a Deep Learning-Based Hybrid (Greulich-Pyle and Modified Tanner-Whitehouse) Method for Bone Age Assessment

  • Kyu-Chong Lee;Kee-Hyoung Lee;Chang Ho Kang;Kyung-Sik Ahn;Lindsey Yoojin Chung;Jae-Joon Lee;Suk Joo Hong;Baek Hyun Kim;Euddeum Shim
    • Korean Journal of Radiology
    • /
    • 제22권12호
    • /
    • pp.2017-2025
    • /
    • 2021
  • Objective: To evaluate the accuracy and clinical efficacy of a hybrid Greulich-Pyle (GP) and modified Tanner-Whitehouse (TW) artificial intelligence (AI) model for bone age assessment. Materials and Methods: A deep learning-based model was trained on an open dataset of multiple ethnicities. A total of 102 hand radiographs (51 male and 51 female; mean age ± standard deviation = 10.95 ± 2.37 years) from a single institution were selected for external validation. Three human experts performed bone age assessments based on the GP atlas to develop a reference standard. Two study radiologists performed bone age assessments with and without AI model assistance in two separate sessions, for which the reading time was recorded. The performance of the AI software was assessed by comparing the mean absolute difference between the AI-calculated bone age and the reference standard. The reading time was compared between reading with and without AI using a paired t test. Furthermore, the reliability between the two study radiologists' bone age assessments was assessed using intraclass correlation coefficients (ICCs), and the results were compared between reading with and without AI. Results: The bone ages assessed by the experts and the AI model were not significantly different (11.39 ± 2.74 years and 11.35 ± 2.76 years, respectively, p = 0.31). The mean absolute difference was 0.39 years (95% confidence interval, 0.33-0.45 years) between the automated AI assessment and the reference standard. The mean reading time of the two study radiologists was reduced from 54.29 to 35.37 seconds with AI model assistance (p < 0.001). The ICC of the two study radiologists slightly increased with AI model assistance (from 0.945 to 0.990). Conclusion: The proposed AI model was accurate for assessing bone age. Furthermore, this model appeared to enhance the clinical efficacy by reducing the reading time and improving the inter-observer reliability.

Predicting rock brittleness indices from simple laboratory test results using some machine learning methods

  • Davood Fereidooni;Zohre Karimi
    • Geomechanics and Engineering
    • /
    • 제34권6호
    • /
    • pp.697-726
    • /
    • 2023
  • Brittleness as an important property of rock plays a crucial role both in the failure process of intact rock and rock mass response to excavation in engineering geological and geotechnical projects. Generally, rock brittleness indices are calculated from the mechanical properties of rocks such as uniaxial compressive strength, tensile strength and modulus of elasticity. These properties are generally determined from complicated, expensive and time-consuming tests in laboratory. For this reason, in the present research, an attempt has been made to predict the rock brittleness indices from simple, inexpensive, and quick laboratory test results namely dry unit weight, porosity, slake-durability index, P-wave velocity, Schmidt rebound hardness, and point load strength index using multiple linear regression, exponential regression, support vector machine (SVM) with various kernels, generating fuzzy inference system, and regression tree ensemble (RTE) with boosting framework. So, this could be considered as an innovation for the present research. For this purpose, the number of 39 rock samples including five igneous, twenty-six sedimentary, and eight metamorphic were collected from different regions of Iran. Mineralogical, physical and mechanical properties as well as five well known rock brittleness indices (i.e., B1, B2, B3, B4, and B5) were measured for the selected rock samples before application of the above-mentioned machine learning techniques. The performance of the developed models was evaluated based on several statistical metrics such as mean square error, relative absolute error, root relative absolute error, determination coefficients, variance account for, mean absolute percentage error and standard deviation of the error. The comparison of the obtained results revealed that among the studied methods, SVM is the most suitable one for predicting B1, B2 and B5, while RTE predicts B3 and B4 better than other methods.

Development of a new explicit soft computing model to predict the blast-induced ground vibration

  • Alzabeebee, Saif;Jamei, Mehdi;Hasanipanah, Mahdi;Amnieh, Hassan Bakhshandeh;Karbasi, Masoud;Keawsawasvong, Suraparb
    • Geomechanics and Engineering
    • /
    • 제30권6호
    • /
    • pp.551-564
    • /
    • 2022
  • Fragmenting the rock mass is considered as the most important work in open-pit mines. Ground vibration is the most hazardous issue of blasting which can cause critical damage to the surrounding structures. This paper focuses on developing an explicit model to predict the ground vibration through an multi objective evolutionary polynomial regression (MOGA-EPR). To this end, a database including 79 sets of data related to a quarry site in Malaysia were used. In addition, a gene expression programming (GEP) model and several empirical equations were employed to predict ground vibration, and their performances were then compared with the MOGA-EPR model using the mean absolute error (MAE), root mean square error (RMSE), mean (𝜇), standard deviation of the mean (𝜎), coefficient of determination (R2) and a20-index. Comparing the results, it was found that the MOGA-EPR model predicted the ground vibration more precisely than the GEP model and the empirical equations, where the MOGA-EPR scored lower MAE and RMSE, 𝜇 and 𝜎 closer to the optimum value, and higher R2 and a20-index. Accordingly, the proposed MOGA-EPR model can be introduced as a useful method to predict ground vibration and has the capacity to be generalized to predict other blasting effects.

근전도 신호 기반 손목 움직임 패턴 분류 알고리즘에 대한 연구 (Pattern Classification Algorithm for Wrist Movements based on EMG)

  • 최항적;김유현;심현민;윤광섭;이상민
    • 재활복지공학회논문지
    • /
    • 제7권2호
    • /
    • pp.69-74
    • /
    • 2013
  • 본 연구에서는 손목 움직임의 추정을 위한 근전도 신호 기반 동작 분류 알고리즘을 제안한다. 근전도의 특징점을 추출하기 위하여 절대차분표준편차(DASDV)과 제곱평균제곱근(RMS)을 사용하며, 측정 된 근전도 신호를 이용하여 동작 마다 30개의 특징점(RMS, DASDV)을 추출한다. 근전도 신호를 특정한 패턴으로 나타내어 적용시키기 위하여 평균값을 기준으로 집단을 두 부분으로 나누고, 패턴분류 방법인 k-NN으로 패턴을 학습시킨 후, 집단을 나누지 않은 방법을 사용한 기존의 연구와 비교하여 제안한 알고리즘의 성능을 검증한다. 실험결과 제안한 알고리즘은 92.59%의 인식률을 보였으며, 이전 연구 결과보다 0.84% 포인트의 성능 개선을 보였다.

  • PDF

학습환경에서 불쾌적온도에서 쾌적온도로의 변화시 생체신호 및 주관적 반응에 대한 실험적 연구 (An Experimental Study of the Bioelectrical Signals and Subjective Response in Changing from Unpleasant to Pleasant Temperatures in a Learning Environment)

  • 임광현;김진현;박차식;조홍현
    • 설비공학논문집
    • /
    • 제27권11호
    • /
    • pp.596-602
    • /
    • 2015
  • In this study, experiments using bioelectronic signals and questionnaire surveys were carried out in learning conditions when temperatures changed from low- and high-uncomfortable to comfortable. As a result, the stress factor Photoplethysmography (PPG) decreased, while the Root Mean Square of Standard Deviation (RMSSD) of PPG increased when the indoor temperature was changed from low- or high-uncomfortable to comfortable. Additionally, the absolute power of the ${\alpha}$-wave in the brain increased. According to the analysis of the association between the questionnaire and bioelectronic signals, the standard deviation of the stress factor as measured by pulse was closely related to the result of the thermal sensation questionnaire. In addition, it was found that the concentration on studying improved under comfortable temperatures when compared to uncomfortable temperatures.

EFFECT OF FUEL STRATIFICATION ON INITIAL FLAME DEVELOPMENT: PART 1-WITHOUT SWIRL

  • Ohm, I.Y.;Park, C.J.
    • International Journal of Automotive Technology
    • /
    • 제7권5호
    • /
    • pp.519-526
    • /
    • 2006
  • For investigating the effect of fuel stratification on flame propagation, initial flame development and propagation were visualized under different axially stratified states in a port injection SI engine. Stratification was controlled by the combination of the port swirl ratio and injection timing. Experiments were performed in an optical single cylinder engine modified from a production engine and images were captured through the quartz window mounted in the piston by an intensified CCD camera. Firstly in this paper, the characteristics under no port-generated swirl condition, i.e. normal conventional case was studied. Under various stratified conditions, flame images were captured at the pre-set crank angles. These were averaged and processed to characterize the flames propagation. The flame stability was estimated by the weighted average of flame area and luminosity. The stability was also evaluated through the standard deviation of flame area and propagation distance, and mean absolute deviation of propagating direction. Results show that stratification state according to injection timing do not affect on the direction of flame propagation. The flame development and the initial flame stability are strongly dependent on the stratified conditions and the initial flame stability is closely related to the engine stability and lean misfire limit.

협업필터링에서 포괄적 성능평가 모델 (A Comprehensive Performance Evaluation in Collaborative Filtering)

  • 유석종
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권4호
    • /
    • pp.83-90
    • /
    • 2012
  • 대규모의 상품을 다루는 전자상거래 시스템에서 개인화된 추천은 필수적인 기능이 되고 있다. 대표적 추천 알고리즘인 협업필터링은 내용기반 추천에 비하여 뛰어난 추천성능을 제공해 주고 있으나, 희박성, 신규 아이템 문제(Cold-start), 확장성 등의 근본적인 한계를 갖고 있다. 본 연구에서는 추가적으로 협업필터링이 목표 대상자에 따라 비일관된 예측 능력의 차이를 보이는 추천 성능의 편차 문제를 제기하고자 한다. 추천성능의 편차는 기존의 Mean Absolute Error(MAE)에 의해서는 측정되기 어려우며 또한 정확도, 재현율 지표와도 독립적으로 평가되고 있다. 협업알고리즘의 정확한 성능평가를 위해서 본 연구에서는 MAE, MAE 편차, 정확도, 재현율을 포괄적으로 평가할 수 있는 확장 성능평가모델을 제안하고 이를 클러스터링 기반 협업필터링에 적용하여 성능을 비교 분석한다.