• Title/Summary/Keyword: mayonnaise preparation

Search Result 13, Processing Time 0.018 seconds

Structural and emulsification properties of octenyl succinylated potato dextrin upon different preparation methods (OSA-감자 덱스트린의 구조 및 유화 특성 연구)

  • Han, Yu-Jin;Li, Shun Ji;Han, Jung-Ah
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.8-13
    • /
    • 2017
  • Octenyl succinylated (OSA) potato starch was dextrinized by two methods: ultrasound (at 25, 50, or $70^{\circ}C$ for 1 h; OSA-25UT, OSA-50UT, and OSA-70UT, respectively) and acid hydrolysis (for 1 or 4 h; OSA-AD1H or OSA-AD4H, respectively), and the properties of the resulting starch were analyzed. The melting enthalpy of OSA-70UT decreased the most (from 14.0 to 10.0 mJ/mg), indicating chain degradation. For pasting properties, as ultrasound treatment temperature increased, peak viscosity decreased (2884, 2550, and 1888 cP, respectively), whereas acid hydrolysis increased peak viscosity and decreased pasting temperature. The relative crystallinity of OSA-dextrin produced by ultrasound or acid hydrolysis significantly decreased (from 33.61 to 14.90-26.03 and 19.28-20.05, respectively) as temperature or time increased, yet a B-type crystal pattern was maintained. Regarding emulsifying stability and sensory tests of mayonnaise prepared with OSA potato dextrin, mayonnaise with OSA-70UT was stable for short storage period (1 week), however mayonnaise with OSA-AD1H was the most suitable for long storage periods (from 2 to 4 weeks). In addition, the OSA-70UT was the most acceptable for mayonnaise in the sensory test.

Optimization of Dressing Preparation from Yogurt Added Saururus chinensis (Lour.) Bail Extract (삼백초 추출물 첨가 요구르트를 이용한 드레싱 제조의 최적화)

  • HwangBo Mi-Hyang;Kim Hyun-Jeong;Yu Mi-Hee;Lee Ji-Won;Lee In-Sean
    • Korean journal of food and cookery science
    • /
    • v.22 no.1 s.91
    • /
    • pp.22-29
    • /
    • 2006
  • Yogurt base was prepared from milk powder $(14\sim18%)$ to which was added 0.4% Saururus chinensis (Lour.) Bail water extract (SCE) and fermented with lactic acid bacteria (a mixed strain of Streptococcus thermophilus and Lactobacillus bulgaricus) at $37^{\circ}C$ for 24 hr. The viscosity of the yogurt added SCE (SCE yogurt) made from 18% milk was higher than that of SCE yogurt containing $14\sim16%$ milk, whereas the pH and titratable acidity of the SCE yogurt were not significantly different on the range of milk contents. The optimal milk concentration for SCE yogurt manufacture was 18%. In order to optimize the preparation of dressing from SCE yogurt, the central composite design was conducted in terms of the yogurt (30, 40, 50, 60, 70 g), the mayonnaise (6, 12, 18, 24, 30 g) and the salt (0.1, 0.3, 0.5, 0.7, 0.9 g) contents. Sensory evaluation was performed and evaluated using a response surface methodology. The optimum ingredient ratio for SCE yogurt dressing was determined to be 61.2% of yogurt, 23.5% of mayonnaise, 0.58% of salt, 0.58% of honey, 1.75% of mustard, 0.23% of Tabasco pepper sauce, 0.94% of wine and 0.04% of white pepper.

Various Types and Manufacturing Techniques of Nano and Micro Capsules for Nanofood

  • Kim, Dong-Myong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.53-63
    • /
    • 2006
  • Nano and micro capsulation (NM capsulation) involve the incorporation for nanofood materials, enzymes, cells or other materials in small capsules. Since Kim D. M. (2001) showed that a new type of food called firstly the name of nanofood, which means nanotechnology for food, and the encapsulated materials can be protected from moisture, heat or other extreme conditions, thus enhancing their stability and maintaining viability applications for this nanofood technique have increased in the food. NM capsules for nanofood is also utilized to mask odours or tastes. Various techniques are employed to form the capsules, including spray drying, spray chilling or spray cooling, extrusion coating, fluidized bed coating, liposome entrapment, coacervation, inclusion complexation, centrifugal extrusion and rotational suspension separation. Each of these techniques is discussed in this review. A wide variety of nanofood is NM capsulated - flavouring agents, acids, bases, artificial sweeteners, colourants, preservatives, leavening agents, antioxidants, agents with undesirable flavours, odours and nutrients, among others. The use of NM capsulation for sweeteners such as aspartame and flavors in chewing gum is well known. Fats, starches, dextrins, alginates, protein and lipid materials can be employed as encapsulating materials. Various methods exist to release the ingredients from the capsules. Release can be site-specific, stage-specific or signaled by changes in pH, temperature, irradiation or osmotic shock. NM capsulation for the nanofood, the most common method is by solvent-activated release. The addition of water to dry beverages or cake mixes is an example. Liposomes have been applied in cheese-making, and its use in the preparation of nanofood emulsions such as spreads, margarine and mayonnaise is a developing area. Most recent developments include the NM capsulation for nanofood in the areas of controlled release, carrier materials, preparation methods and sweetener immobilization. New markets are being developed and current research is underway to reduce the high production costs and lack of food-grade materials.

  • PDF