• 제목/요약/키워드: maximum wind speed

검색결과 590건 처리시간 0.028초

인버터 부착형 농형 유도발전기의 계통고장특성 모의 (Grid faults characteristics simulation of inverter-fed induction generator)

  • 홍지태;권순만;김춘경;이종무;천종민;김홍주;김희제
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.43.1-43.1
    • /
    • 2011
  • The detail simulation modeling of fully-fed induction generator is investigated through PC based MATLAB/Simulink environment. Generator's stator currents are controlled by indirect vector control method. In this method, generator side converter controls the maximum excitation (air gap flux) by stator d-axis current and controls generator torque by stator q-axis current. Induction generator speed is controlled by tip speed ratio (TSR) upon the wind speed variations in order to generate the maximum output power. The generator torque model is specified as a 3-blade wind turbine with rating, then, the model is simulated under normal operating condition and three different fault conditions. The matlab model designed for fully-fed induction generator based wind farm provides good performance under normal and grid fault conditions. It provides good results for different pwm techniques and fault conditions except the single-phase line to ground fault, which should be verified with real time data from wind farms.

  • PDF

풍력터빈 성능시험을 위한 풍동 개념연구 (Conceptual Design Study of a Low-Speed Wind Tunnel for Performance Test of Wind Turbine)

  • 강승희;최우람;김해정;김용휘
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.431-434
    • /
    • 2009
  • Conceptual study of an open-circuit type low-speed wind tunnel for test of wind turbine blade is conducted. The tunnel is constituted of a settling chamber, a contraction, closed and open test sections, a diffuser, two corners, a cross leg and a fan and motor. For the performance test, the closed test section width of 1.8 m, height of 1.8 m and length of 5.25 m is selected. The open test section with dimension width of 1.8 m, height of 1.8 m and length of 4.14 m is adopted for aeroacoustic test. The contraction ratio is 9 to 1 and maximum speed in the closed test section is 67 m/sec. Input power in the tunnel is about 238 kW and its energy ratio is 3.6. The wind tunnel designed in present study will be an effective tool in research and development of wind turbine.

  • PDF

모델 기반의 풍력발전용 유도발전기의 최소 손실 제어 (Model-Based Loss Minimization Control for Induction Generators - in Wind Power Generation Systems)

  • 아보칼릴 아메드;이동춘
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권7호
    • /
    • pp.380-388
    • /
    • 2006
  • In this paper, a novel control algorithm to minimize the power loss of the induction generator for wind power generation system is presented. The proposed method is based on the flux level reduction, where the flux level is computed from the machine model for the optimum d-axis current of the generator. For the vector-controlled induction generator, the d-axis current controls the excitation level in order to minimize the generator loss while the q-axis current controls the generator torque, by which the speed of the induction generator is controlled according to the variation of the wind speed in order to produce the maximum output power. Wind turbine simulator has been implemented in laboratory to validate the theoretical development. The experimental results show that the loss minimization process is more effective at low wind speed and that the percent of power loss saving can approach to 25%. Experimental results are shown to verify the validity of the proposed scheme.

PSCAD/EMTDC를 이용한 계통연계형 풍력발전시스템 모델링 (Modeling of Grid-connected Wind Energy Conversion System Using PSCAD/EMTDC)

  • 김슬기;김응상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.320-322
    • /
    • 2002
  • The paper presents an electrical model of a grid-connected wind energy conversion system (WECS) with a variable speed drive, a fixed pitch angle, a synchronous generator as a wind generator and AC-DC-AC conversion scheme for simulating dynamic behaviors and performance responding to varying wind speed input. The electric output of the WECS is controlled by the AC-DC-AC conversion scheme, the objective of which is to capture the maximum active power under varying wind conditions and to keep the voltage of WECS terminal bus at a specific level. Aerodynamic models are used to incorporate the power characteristics to wind speed. The modeling and simulation of the WECS are realized on PSCAD/EMTDC environment.

  • PDF

풍속계와 Motor-Generator를 이용한 영구자석동기발전기 풍력발전시스템 하드웨어 시뮬레이터 개발 (Development of hardware simulator for PMSG wind power system composed of anemometer and motor-generator set)

  • 정종규;한병문
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 추계학술대회
    • /
    • pp.248-249
    • /
    • 2010
  • This paper describes development of hardware simulator for the PMSG(Permanent Magnet Synchronous Generator) wind power system, which was designed using real wind data. The simulator consists of a realistic wind turbine model using anemometer, vector drive, induction motor. The turbine simulator generates torque and speed signals for a specific wind turbine with respect to given wind speed. This torque and speed signals are scaled down to fit the input of 3kW PMSG. The PMSG-side converter operates to track the maximum power point and the grid-side inverter controls the active and reactive power supplied to the grid. The operational feasibility was first verified by computer simulations with PSCAD/EMTDC. The feasibility of real system implementation was confirmed through experimental works with a hardware set-up.

  • PDF

Study on Reserve Requirement for Wind Power Penetration based on the Cost/Reliability Analysis

  • Shin, Je-Seok;Kim, Jin-O;Bae, In-Su
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1397-1405
    • /
    • 2017
  • As the introduction of wind power is steadily increasing, negative effects of wind power become more important. To operate a power system more reliable, the system operator needs to recognize the maximum required capacity of available generators for a certain period. For recognizing the maximum capacity, this paper proposes a methodology to determine an optimal reserve requirement considering wind power, for the certain period in the mid-term perspective. As wind speed is predicted earlier, the difference of the forecasted and the actual wind speed becomes greater. All possible forecast errors should be considered in determining optimal reserve, and they are represented explicitly by the proposed matrix form in this paper. In addition, impacts of the generator failure are also analyzed using the matrix form. Through three main stages which are the scheduling, contingency and evaluation stages, costs associated with power generation, reserve procurement and the usage, and the reliability cost are calculated. The optimal reserve requirement is determined so as to minimize the sum of these costs based on the cost/reliability analysis. In case study, it is performed to analyze the impact of wind power penetration on the reserve requirement, and how major factors affect it.

한반도의 날씨 스트레스 지수 NET(Net Effective Temperature) 분포의 특성 (The Spatial and temporal distributions of NET(Net Effective Temperature) with a Function of Temperature, Humidity and Wind Speed in Korea)

  • 허인혜;최영은;권원태
    • 대한지리학회지
    • /
    • 제39권1호
    • /
    • pp.13-26
    • /
    • 2004
  • 본 연구는 상대적 날씨 스트레스 지수로 NET의 적용 가능성을 파악하고자 하였다. 기상청에서 예보하고 있는 기온, 습도, 바람 자료를 이용하여 NET 값의 시공간적 분포 특성을 분석하였다. 여름철 스트레스 지수인 일 최고 NET의 지역별 스트레스 기준값은 바람과 습도보다는 기온의 영향을 받으므로 일 최고 기온의 분포와 유사하다. 겨울철 스트레스 지수인 일 최저 NET의 스트레스 기준값은 산지 지역과 서울 이북 지역에서는 낮은 기온의 영향을. 해안 지역에서는 강한 바람의 영향으로 기준값이 여름철에 비하여 다양하게 나타난다. 스트레스가 강한 날의 발생 빈도는 여름철은 뚜렷한 연변화가 나타나지 않지만, 겨울철에는 1990년대 중반 이후 뚜렷한 증가 경향을 보인다.

Effect of trunk length on the flow around a fir tree

  • Lee, Jin-Pyung;Lee, Eui-Jae;Lee, Sang-Joon
    • Wind and Structures
    • /
    • 제18권1호
    • /
    • pp.69-82
    • /
    • 2014
  • Flow around a small white fir tree was investigated with varying the length of the bottom trunk (hereafter referred to as bottom gap). The velocity fields around the tree, which was placed in a closed-type wind tunnel test section, were quantitatively measured using particle image velocimetry (PIV) technique. Three different flow regions are observed behind the tree due to the bottom gap effect. Each flow region exhibits a different flow structure as a function of the bottom gap ratio. Depending on the gap ratio, the aerodynamic porosity of the tree changes and the different turbulence structure is induced. As the gap ratio increases, the maximum turbulence intensity is increased as well. However, the location of the local maximum turbulence intensity is nearly invariant. These changes in the flow and turbulence structures around a tree due to the bottom gap variation significantly affect the shelter effect of the tree. The wind-speed reduction is increased and the height of the maximum wind-speed reduction is decreased, as the gap ratio decreases.

Quantitative assessment of offshore wind speed variability using fractal analysis

  • Shu, Z.R.;Chan, P.W.;Li, Q.S.;He, Y.C.;Yan, B.W.
    • Wind and Structures
    • /
    • 제31권4호
    • /
    • pp.363-371
    • /
    • 2020
  • Proper understanding of offshore wind speed variability is of essential importance in practice, which provides useful information to a wide range of coastal and marine activities. In this paper, long-term wind speed data recorded at various offshore stations are analyzed in the framework of fractal dimension analysis. Fractal analysis is a well-established data analysis tool, which is particularly suitable to determine the complexity in time series from a quantitative point of view. The fractal dimension is estimated using the conventional box-counting method. The results suggest that the wind speed data are generally fractals, which are likely to exhibit a persistent nature. The mean fractal dimension varies from 1.31 at an offshore weather station to 1.43 at an urban station, which is mainly associated with surface roughness condition. Monthly variability of fractal dimension at offshore stations is well-defined, which often possess larger values during hotter months and lower values during winter. This is partly attributed to the effect of thermal instability. In addition, with an increase in measurement interval, the mean and minimum fractal dimension decrease, whereas the maximum and coefficient of variation increase in parallel.

강원도 기상데이터를 이용한 풍속 지도 제작 (Producing Wind Speed Maps Using Gangwon Weather Data)

  • 김기홍;윤준희;김백석
    • 대한공간정보학회지
    • /
    • 제18권1호
    • /
    • pp.31-39
    • /
    • 2010
  • 석유파동이후 신재생에너지의 중요성이 대두되고 현재에 들어 저탄소 녹색성장으로 다시금 그 중요성은 커지고 있다. 본 논문에서는 신재생 에너지 중 가장 현실적인 대안으로 받아들여지고 있는 풍력에너지에 대하여 강원지방 기상청의 2008년 데이터 이용하여 풍속지도를 제작 하였다. 강원도 월별 평균 풍속과 최대풍속지도를 제작하였으며, 기상자료에 여러 가지 보간법을 적용하고 방법에 따른 차이를 확인하였다. 강원도 지역의 특수한 지형적, 기후적 특성이 반영된 풍속지도는 풍력 단지 입지분석에 활용성이 높을 것으로 기대된다.