• 제목/요약/키워드: maximum wind speed

검색결과 590건 처리시간 0.02초

도시 협곡에서 유입류 풍속과 난류 슈미트수에 대한 대기오염물질 확산의 민감도 연구 (A Study on Sensitivity of Pollutant Dispersion to Inflow Wind Speed and Turbulent Schmidt Number in a Street Canyon)

  • 왕장운;김재진
    • 대기
    • /
    • 제25권4호
    • /
    • pp.659-667
    • /
    • 2015
  • In this study, sensitivity of inflow wind speed and turbulent Schmidt number to pollutant dispersion in an urban street canyon is investigated, by comparing CFD-simulated results to wind-tunnel results. For this, we changed systematically inflow wind speed at the street-canyon height ($1.5{\sim}10.0m\;s^{-1}$ with the increment of $0.5m\;s^{-1}$) and turbulent Schmidt number (0.2~1.3 with interval of 0.1). Also, we performed numerical experiments under the conditions that turbulent Schmidt numbers selected with the magnitude of mean kinetic energy at each grid point were assigned in the street canyon. With the increase of the inflow wind speed, the model underestimated (overestimated) pollutant concentration in the upwind (downwind) side of the street canyon because of the increase of pollutant advection. This implies that, for more realistic reproduction of pollutant dispersion in urban street canyons, large (small) turbulent Schmidt number should be assigned for week (strong) inflow condition. In the cases of selectively assigned turbulent Schmidt number, mean bias remarkably decreased (maximum 60%) compared to the cases of constant turbulent Schmidt number assigned. At week (strong) inflow wind speed, root mean square error decreases as the area where turbulent Schmidt number is selectively assigned becomes large (small).

Aerodynamic effects of subgrade-tunnel transition on high-speed railway by wind tunnel tests

  • Zhang, Jingyu;Zhang, Mingjin;Li, Yongle;Fang, Chen
    • Wind and Structures
    • /
    • 제28권4호
    • /
    • pp.203-213
    • /
    • 2019
  • The topography and geomorphology are complex and changeable in western China, so the railway transition section is common. To investigate the aerodynamic effect of the subgrade-tunnel transition section, including a cutting-tunnel transition section, an embankment-tunnel transition section and two typical scenarios for rail infrastructures, is selected as research objects. In this paper, models of standard cutting, embankment and CRH2 high-speed train with the scale of 1:20 were established in wind tunnel tests. The wind speed profiles above the railway and the aerodynamic forces of the vehicles at different positions along the railway were measured by using Cobra probe and dynamometric balance respectively. The test results show: The influence range of cutting-tunnel transition section is larger than that of the embankment-tunnel transition section, and the maximum impact height exceeds 320mm (corresponding to 6.4m in full scale). The wind speed profile at the railway junction is greatly affected by the tunnel. Under the condition of the double track, the side force coefficient on the leeward side is negative. For embankment-tunnel transition section, the lift force coefficient of the vehicle is positive which is unsafe for operation when the vehicle is at the railway line junction.

입력변수의 조건에 따른 대기확산모델의 민감도 분석 (Sensitivity Analysis of the Atmospheric Dispersion Modeling through the Condition of Input Variable)

  • 정진도;김장우;김정태
    • 한국환경과학회지
    • /
    • 제14권9호
    • /
    • pp.851-860
    • /
    • 2005
  • In order to how well predict ISCST3(lndustrial Source Complex Short Term version 3) model dispersion of air pollutant at point source, sensitivity was analysed necessary parameters change. ISCST3 model is Gaussian plume model. Model calculation was performed with change of the wind speed, atmospheric stability and mixing height while the wind direction and ambient temperature are fixed. Fixed factors are wind direction as the south wind(l80") and temperature as 298 K(25 "C). Model's sensitivity is analyzed as wind speed, atmospheric stability and mixing height change. Data of stack are input by inner diameter of 2m, stack height of 30m, emission temperature of 40 "C, outlet velocity of 10m/s. On the whole, main factor which affects in atmospheric dispersion is wind speed and atmospheric stability at ISCST3 model. However it is effect of atmospheric stability rather than effect of distance downwind. Factor that exert big influence in determining point of maximum concentration is wind speed. Meanwhile, influence of mixing height is a little or almost not.

풍력 터빈 모의 실험을 위한 가변 토오크 입력형 시뮬레이터 (A Wind Turbine Simulator with Variable Torque Input)

  • 정병창;송승호;노도환;김동용
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권8호
    • /
    • pp.467-474
    • /
    • 2002
  • In this paper, a wind power simulator is designed and implemented. To realize the torque of wind blade, a DC motor is used as a variable torque input device. An induction machine is used as a generator of which speed is controlled to maintain the optimal tip speed ratio during wind speed change. Input torque of system is controlled by armature current of DC motor and speed is controlled by generator control unit using field oriented control algorithm. Various control algorithms such as MPPT, soft start up, the simulator reactive power control, can be developed and tested using the simulator.

태풍 내습 시 지상 최대풍 추정을 위한 WRF 수치모의 사례 연구 : 태풍 RUSA와 MAEMI를 대상으로 (A Case Study of WRF Simulation for Surface Maximum Wind Speed Estimation When the Typhoon Attack : Typhoons RUSA and MAEMI)

  • 정우식;박종길;김은별;이보람
    • 한국환경과학회지
    • /
    • 제21권4호
    • /
    • pp.517-533
    • /
    • 2012
  • This study calculated wind speed at the height of 10 m using a disaster prediction model(Florida Public Hurricane Loss Model, FPHLM) that was developed and used in the United States. Using its distributions, a usable information of surface wind was produced for the purpose of disaster prevention when the typhoon attack. The advanced research version of the WRF (Weather Research and Forecasting) was used in this study, and two domains focusing on South Korea were determined through two-way nesting. A horizontal time series and vertical profile analysis were carried out to examine whether the model provided a resonable simulation, and the meteorological factors, including potential temperature, generally showed the similar distribution with observational data. We determined through comparison of observations that data taken at 700 hPa and used as input data to calculate wind speed at the height of 10 m for the actual terrain was suitable for the simulation. Using these results, the wind speed at the height of 10 m for the actual terrain was calculated and its distributions were shown. Thus, a stronger wind occurred in coastal areas compared to inland areas showing that coastal areas are more vulnerable to strong winds.

수직축 항력식 풍력터빈의 구조설계 및 실험평가 (Structure Design and Experimental Appraisal of the Drag Force Type Vertical Axis Wind Turbine)

  • 김동건;금종윤;윤순현
    • 대한기계학회논문집B
    • /
    • 제30권3호
    • /
    • pp.278-286
    • /
    • 2006
  • Experiments were conducted to estimate the performance of drag force type vertical axis wind turbine with an opening-shutting rotor. It was operated by the difference in drag force generated on both sides of the blades. The rotational speed was measured by a tachometer in a wind tunnel and the tunnel wind speed was measured by using a pilot-static tube and a micro manometer. The performance test for a prototype was accomplished by calculating power, power coefficient, torque coefficient from the measurement of torque and rpm by a dynamometer controller. Various design parameters, such as the number of blades(B), blade aspect ratio(W/R), angle of blades$(\alpha)$ and drag coefficient acting on a blade, were considered for optimal conditions. At the experiment of miniature model, maximum efficiency was found at N=15, $\alpha=60^{\circ}$ and W/R=0.32. The measured test variables were power, torque, rotational speed, and wind speeds. The data presented are in the form of power and torque coefficients as a function of tip-speed ratio V/U. Maximum power was found in case of $\Omega=0.33$, when the power and torque coefficient were 0.14 and 0.37 respectively. Comparing model test with prototype test, similarity law by advance ratio for vertical axis wind turbine was confirmed.

농형 유도발전기를 이용한 계통 연계형 풍력발전 시스템 (Grid-Connected Wind Power Generation System Using Cage-Type Induction Generators)

  • 김형균;;이동춘;석줄기
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 추계학술대회 논문집
    • /
    • pp.73-76
    • /
    • 2003
  • This paper proposes a maximum output power control of grid-connected wind power generation system using cage-type induction generators. For generator control, indirect vector control is used, where d-axis current controls the excitation level and q-axis current controls the generator speed. The generated power flows into the utility through the grid-side converter, by which the do link voltage is controlled to be constant and the ac current is controlled in sinusoid and. The generator speed is adjusted according to wind speed for extracting maximum power generation. Experimental results are shown to verify the validity of the proposed scheme.

  • PDF

난류풍속에 대한 MW급 풍력터빈의 토크제어 방법에 따른 응답 특성 비교 (Comparison of Response Properties Determined in Two Torque Control Methods for a 2.75-MW Wind Turbine Under Turbulence Wind Speed)

  • 임채욱;서강윤
    • 대한기계학회논문집A
    • /
    • 제34권12호
    • /
    • pp.1885-1891
    • /
    • 2010
  • 풍력터빈의 토크제어는 정격풍속 이하에서 매우 중요하다. 토크제어의 주된 목적은 바람이 가진 공기역학적 파워로부터 최대의 파워를 얻도록 하는 것이다. 풍력터빈의 토크제어 방법은 토크모드 제어와 속도모드 제어로 크게 두 경우로 구분된다. 토크모드 제어는 풍력터빈에서 잘 알려지고 전통적으로 사용되는 방법으로 발전기 회전속도의 제곱에 비례하도록 발전기의 토크크기를 발생시킨다. 속도모드 제어에서는 발전기의 토크크기를 발생하기 위하여 PI 제어기를 사용한다. 본 논문에서는 실제 풍속이 난류인 점을 고려하여 2.75 MW 풍력터빈을 대상으로 두 토크제어 방법을 적용한 수치실험 결과를 제시하고 응답특성을 비교한다.

농형 유도발전기를 이용한 독립형 풍력발전시스템의 최대출력제어 (Maximum Output Power Control for Stand-Alone Wind Power Generation System Using Cage-Type Induction Generators)

  • 김형균;이동춘;석줄기
    • 전력전자학회논문지
    • /
    • 제9권1호
    • /
    • pp.73-80
    • /
    • 2004
  • 본 논문에서는 농형유도발전기를 이용한 독립형 풍력발전시스템의 최대전력 추종제어기법을 제안한다. 농형 유도발전기는 벡터제어 방식으로 동작되는데 d-축 전류에 의해 여자가 제어되고 q-측 전류에 토크가 제어된다. 이 토크제어에 의해 발전기는 풍속의 변화에 따라 최대전력을 발생하도록 가변속 제어된다. 발전된 전력은 ac/dc PWM 컨버터에 의해 직류 출력단 배터리뱅크로 충전된다. 제안된 기법은 M-G세트로 구성된 터빈시뮬레이터를 이용하여 실험적으로 검증된다.

와이블 형상계수에 따른 이용률 변화 (Variation of Capacity Factors by Weibull Shape Parameters)

  • 권일한;김진한;백인수;유능수
    • 한국태양에너지학회 논문집
    • /
    • 제33권1호
    • /
    • pp.32-39
    • /
    • 2013
  • Effects of Weibull shape parameter, k, on capacity factors of wind turbines were investigated. Wind distributions with mean wind speeds of 5 m/s, 6 m/s, 7 m/s and 8 m/s were simulated and used to estimate the annual energy productions and capacity factors of a 2MW wind turbine for various Weibull shape parameters. It was found from the study that the capacity factors of wind turbines are much affected by Weibull shape parameters. When the annual mean wind speed at the hub height of a wind turbine was about 7 m/s, and the air density was assumed to be 1.225 $kg/m^3$, the maximum capacity factor of a 2 MW wind turbine having a rated wind speed of 13 m/s was found to occur with the shape parameter of 2. It was also found that as the mean wind speed increased, the Weibull k parameter which yielded the maximum capacity factor increased. The simulated results were also validated by predictions of capacity factors of wind turbines using wind data measured in complex terrain.