• Title/Summary/Keyword: maximum wave height

Search Result 185, Processing Time 0.021 seconds

Theoretical Analysis of Wave Energy Converter

  • Oh, Jin-Seok;Komatsu, Toshimitsu;Kim, Yun-Hyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.169-174
    • /
    • 2008
  • Floating devices, such as a cavity resonance device take advantage of both the water motion and the wave induced motions of the floating body itself. The wave energy converter is known commercially as the WAGB(Wave Activated Generator Buoy) and is used in some commercially available buoys to power navigation aids such as lights and horns. This wave energy converter consists of a circular floatation body which contains a vertical center pipe that has free communication with the sea. A theoretical analysis of this power generated by a pneumatic type wave energy converter is performed and the results obtained from the analysis are used for a real wave energy converter for buoy. This paper presents the analysis results and the design method for the WEC(Wave Energy Converter), and the associate results are application to the commercially available WEC for buoy. Maximum performance of WEC occurs at resonance with driving waves. The analysis of WEC is performed with LabVIEW program, and the design method of WEC for buoy is suggested in this paper.

Analysis of Wave Parametric Characteristics using WAVEWATCH-III Model and Observed Buoy Data (파랑모델과 부이 자료를 이용한 파랑인자 특성 분석)

  • 장유순;서장원;김태희;윤용훈
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.274-284
    • /
    • 2003
  • The analysis of wave parametric characteristics in sea regions in the vicinity of Korean Peninsula have been carried out using the third generation wave model, WAVEWATCH-III (Tolman, 1999) and four observed buoy data of Korea Meteorological Administration (KMA). Significant wave height increases about 2-3 hours later after the increase of wind speed. Maximum correlation coefficient between two parameters appears in Donghae buoy data, which is at off-shore region. When land breeze occurs, it can be found that the correlation coefficient decreases. Time differences between wind speeds and wave heights correspond to significant tidal periods at all of the buoy locations except for Donghae buoy. After verifying the WAVEWATCH-III model results by the comparing with observed buoy data, we have carried out numerical experiments near the Kuroshio current and East Sea areas, and then reconfirmed that when there exist an opposite strong current in the propagation direction of the waves or wind direction, wave height and length get higher and shorter, respectively and vice versa. It has been shown that these modulations of wave parameters are considerable when wind speed is week or mean current is relatively strong, and corresponding values have been represented.

Characteristics on the Extreme Value Distributions of Deepwater Design ave Heights off the Korean Coast (한국 연안 심해 설계파고의 극치분포 특성)

  • Shin Taek Jeong;Jeong Dae Kim;Cho Hong Yeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.3
    • /
    • pp.130-141
    • /
    • 2004
  • For a coastal or harbor structure design, one of the most important environmental factors is the appropriate design wave condition. Especially, the information of deepwater wave height distribution is essential for reliability design. In this paper, a set of deep water wave data obtained from KORDI(2003) were analyzed for extreme wave heights. These wave data at 67 stations off the Korean coast from 1979 to 1998 were arranged in the 16 directions. The probability distributions considered in this research were the Weibull, the Gumbel, the Log-pearson Type-III, and Lognormal distribution. For each of these distributions, three parameter estimation methods, i.e. the method of moments, maximum likelihood and probability weighted moments, were applied. Chi-square and Kolmogorov-Smirnov goodness-of-fit tests were performed, and the assumed distribution was accepted at the confidence level 95%. Gumbel distribution which best fits to the 67 station was selected as the most probable parent distribution, and optimally estimated parameters and 50 year design wave heights were presented.

A Study on the Measurement of Ship Wave (항주파 관측에 관한 연구)

  • Jung, Dae-Deug
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.4
    • /
    • pp.297-301
    • /
    • 2008
  • On-site measurement of ship wave has been carried out in the vicinity of Mokpo inner harbour. The wave data were collected and logged 5Hz by the ultrasonic instrument for 12hour on May 17, 2006. The number of data was 216,000 and the maximum wave height was 81.41cm in normal weather condition. It was found that the wave conditions in this water area are predominantly affected by the ship-generated waved under normal condition. By comparing with the wind-generated waves in the open region which were irregular but with dominant directional characteristics, the existing harbor wave field was much more complex.

  • PDF

Dynamic Wave Pressure Study on a Recurved Offshore Structure (곡면 해양구조물에 작용하는 동파력 고찰)

  • Jo, Cheol-Hui
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.149-155
    • /
    • 1995
  • This study is to investigate the dynamic pressure caused by breaking waves on a recurved offshore structure. A physical modelling was performed in a two-dimensional wave flume. The measuments from the physical modelling were compared with several known equations. The shock and secondary pressures were found to be dependent on water depth, breaking wave height and the size of the air pocket. The maximum pressure was recorded near the still water level and the secondary pressures near the recurved the recurved structure were found to be less than those experienced in a vertical offshore structure.

  • PDF

Hydraulic Model Experimental Study on the Rope Kink Phenomena and Mooring Block Behavior under Wave Conditions at a Seaweed Farm (연승 수하식 양식시설의 파랑 중 해조류 꼬임 현상 및 계류용 블록 이동에 관한 수리모형 실험적 연구)

  • Kim, Heon-Tae;Choi, Jin-Hyu;Yoon, Han-Sam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.1
    • /
    • pp.11-17
    • /
    • 2014
  • In this study, a hydraulic model experiment under wave conditions was carried out to investigate the gap/distance between two near-unit farm lines that affects the rope kink and shape variation of a seaweed farm during mooring block movement. As a result, rope kink occurred during the low wave height condition as the gap/distance between the two near-unit farm lines decreased. The seaweed farm maintained a stable shape in the higher wave height conditions as the gap/distance between the two near-unit farm lines increased. This result indicates that rope kink is sensitively affected by the gap/distance between the two near-unit farm lines. A tendency to increase the critical wave height was observed when mooring block movement occurred, and as the mooring block weight and wave period increased. From the experimental results in which incident wave conditions and the mooring block weight changed, as the front side mooring block weight increased from 3.0 to 8.0 tons, the seaweed farm was stable, and rear side mooring block movement hardly occurred. The observed tension of the seaside mooring line was a maximum at about 3.0 ton/m.

Experimental Study for Downfall Pressure on the Floor behind Rubble-Mound Structure by Wave Overtopping: Non-Breaking Condition (월파에 의한 경사식구조물 배후면에 작용하는 낙하파압에 대한 실험적 연구: 비쇄파조건)

  • Lee, Jong-In;Moon, Gang Il;Kim, Young Il
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.2
    • /
    • pp.27-36
    • /
    • 2022
  • The large uprush could be occurred when the waves hit the coastal structure and this uprush by wave could make the overtopping. The downfall of the wave overtopping water over the structure brought about the vertical impact loads. The vertical impact loads should be evaluated in order to design the pavement behind the crown wall however these loads were still unclear. In this study, the hydraulic model tests for the downfall impact loads by wave overtopping were performed and the various conditions were applied to the tests. The effect of the incident wave condition, the freeboard, the armour crest height and the height of the parapet were investigated. The test results showed that the parapet on the crown wall could reduce the wave overtopping however the inclusion of parapet could lead to the increased downfall wave pressures behind the crown wall. The empirical formulae were proposed for evaluating the maximum downfall pressures behind the crown wall of rubble mound structure.

A Study on Lashing Standards for Car Ferry Ships Sailing in Smooth Sea Areas (평수구역을 운항하는 여객선의 차량고박 기준에 관한 연구)

  • Kang, Byung-Sun;Jung, Chang-Hyun;Kim, Deug-Bong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • In recent years, cargo lashing has received much importance, to help prevent the sinking of passenger ships due to the failure of vehicle and cargo lashing during the transshipment of cargo. Consequently, the standards for lashing equipment and the structure of car ferries have been revised. According to the current standards, all vehicles loaded on a car ferry sailing in smooth sea areas must be secured if the wind speed and wave height exceed 7 m/s and 1.5 m, respectively. In this study, we measured the roll and pitch of a passenger ship sailing in smooth sea areas, and compared the measurements with the results of the New Strip Method (NSM). The vessel had a maximum pitch of 1.41° and a maximum roll of 1.37° at a wind speed of 6-8 m/s and a wave height of 0.5-1.0 m, and a maximum pitch of 1.49° and a maximum roll of 2.43° at a wind speed of 10-12 m/s and a wave height of 1.0-1.5 m. A comparison of the external forces due to the motion of the hull and the bearing capacity without lashing indicated that the bearing capacity was stronger. This suggests that vehicles without lashing will not slip or fall due to weather conditions. In future, the existing vehicle lashing standards can be revised after measuring the hull motions of various ships, and comparing the external force and bearing capacity, to establish more reasonable requirements.

Directional Asymmetry Parameter and Maximum Spreading Parameter of Random Waves Incident on a Planar Slope (경사면을 입사하는 불규칙파랑의 방향 비대칭 매개변수 및 최대 방향분포 매개변수)

  • Jung, Jae-Sang;Lee, Changhoon;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.1
    • /
    • pp.28-33
    • /
    • 2013
  • Multidirectional random waves that obliquely approach the shore were found to become directionally asymmetric due to refraction. The directional asymmetry was expressed in terms of the asymmetry parameter which is related to the maximum spreading parameter ($s_{max}$). In this study, we calculate variation of both the asymmetry and maximum spreading parameters at different water depths for various cases of incident wave angles and maximum spreading parameters in deep water. These values are different from Goda and Suzuki (1975) who neglected directional asymmetry of waves. In calculating directional asymmetry and maximum spreading parameters, we use the JONSWAP spectrum (Hasselmann et al., 1973) and Lee et al.'s (2010) directional distribution function. The processes and results are nondimensionalized with significant wave height, peak frequency and peak wave length in deep water.

Passive control of unsteady compression wave using vertical bleed ducts (수직갱을 이용한 터널내 비정상 압축파의 피동제어)

  • Kim, Hui-Dong;Setoguchi, Toshiaki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1095-1104
    • /
    • 1997
  • When a high-speed railway train enters a tunnel, a compression wave is generated ahead of the train and propagates along the tunnel, compressing and accelerating the rest air in front of the wave. At the exit of the tunnel, an impulsive wave is emitted outward toward the surrounding, which causes a positive impulsive noise like a kind of sonic boom produced by a supersonic aircraft. With the advent of high-speed train, such an impulsive noise can be large enough to cause the noise problem, unless some attempts are made to alleviate its pressure levels. For the purpose of the impulsive noise reduction, the present study investigated the effect of a vertical bleed duct on the compression wave propagating into a model tunnel. Numerical results were obtained using a Piecewise Linear Method and testified by experiment of shock tube with an open end. The results showed that the vertical bleed duct reduces the maximum pressure gradient of compression wave front by about 30 percent, compared with the straight tunnel without the bleed duct. As the width of the vertical bleed duct becomes larger, reduction of the impulsive noise is expected to be greater. However the impulsive noise is independent of the height of the vertical bleed duct.