• Title/Summary/Keyword: maximum value

Search Result 7,040, Processing Time 0.038 seconds

Evaluation on Heating Effects of Geothermal Heat Pump System in Farrowing House (지열 난방시스템을 이용한 분만돈사의 난방효과 분석)

  • Choi, H.C.;Park, Jae-Hong;Song, J.I.;Na, J.C.;Kim, M.J.;Bang, H.T.;Kang, H.G.;Park, S.B.;Chae, H.S.;Suh, O.S.;Yoo, Y.S.;Kim, T.W.
    • Journal of Animal Environmental Science
    • /
    • v.16 no.3
    • /
    • pp.205-215
    • /
    • 2010
  • Geothermal heat pump system (GHPS) is an energy-efficient technology that use the relatively constant and renewable energy stored in the earth to provide heating and cooling. With the aim of using GHPS as a heating source, it's possibilities of application in farrowing house were examined by measuring environmental assessment and sow's performance. A total of 96 sows were assigned to 2 pig housings (GHPS and conventional housing) with 48 for four weeks in winter season. During the experimental period, indoor maximum temperature in GHPS-housing was measured up to $26.7^{\circ}C$, average temperature could maintain $21.2^{\circ}C$. The mean value of dust levels and $CO_2$, $NH_3$ and $H_2S$ gas emissions were decreased in GHPS-housing compare with those of conventional housing. Litter size, birth weight, parity and weaning weight did not differ between housings. However, feed intake of sow in GHPS-housing was lower than that of conventional housing. In energy consumption for heating, electric power consumption increased in GHPS-housing than the conventional housing, a 2,250 kwh increase, whereas there is no fuel usage for heater in GHPS-housing. Amount of ground water circulated for heating in cold weather for earth heat exchanger was 8.4-12.9 ton per day. In conclusion, GHPS may have environmental benefits and effectiveness of heating in farrowing housing and affect the performance in sows.

Detection Characteristics of PSL and TL Methods in Spices Irradiated with Different Radiation Sources (조사선원에 따른 향신료의 PSL과 TL 검지 특성)

  • Kim, Kyu-Heon;Kwak, Ji-Young;Kim, Jung-Ki;Hwang, Cho-Rong;Lee, Jae-Hwang;Park, Yong-Chjun;Kim, Jae-I;Jo, Tae-Yong;Lee, Hwa-Jung;Lee, Sang-Jae;Han, Sang-Bae
    • Journal of Radiation Industry
    • /
    • v.7 no.1
    • /
    • pp.15-21
    • /
    • 2013
  • The detection characteristics of irradiated spices were investigated depending on radiation sources and doses by photostimulated luminescence (PSL) and Thermoluminescence (TL). 6 kinds of spices (turmeric, onion powder, red pepper, basil, parsley, black pepper) were irradiated at 0 to 10 kGy under ambient conditions by both a $^{60}Co$ gamma irradiator and an electron beam (EB) accelerator, respectively. The PSL analysis showed negative results for non-irradiated spices, while irradiated spices gave intermediate and positive value, which presented the limited potential of PSL technique. In TL measurement, TL glow curves on non-irradiated samples appeared at about $300^{\circ}C$ with low intensity. All irradiated samples were easily distinguishable through radiation-specific strong TL glow curves with maximum peak in range of $150{\sim}200^{\circ}C$. TL ratio ($TL_1/TL_2$) obtained by a re-irradiation step could verify the detection result of $TL_1$ glow curves, showing ratios lower than 0.1 in the non-irradiated sample and higher than 0.1 in irradiated ones. Therefore, in PSL measurement, the identification of irradiated spices showed more clear results in electron beam irradiated samples. TL analysis showed obvious difference between non-irradiated and irradiated samples in gamma ray and electron beam irradiated samples.

Specific Absorption Coefficients for the Chlorophyll and Suspended Sediment in the Yellow and Mediterranean Sea (황해와 지중해에서의 클로로필 및 부유입자의 비흡광계수 연구)

  • 안유환;문정언
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.353-365
    • /
    • 1998
  • Light absorption coefficient per unit mass of particles, i.e., specific absorption coefficient, is important as one of the main parameters in developing algorithms for ocean color remote sensing. Specific absorption coefficient of chlorophyll ($a^*_{ph}$) and suspended sediment ($a^*_{ss}$) were analyzed with a spectrophotometer using the "wet filter technique" and "Kishino method" for the seawater collected in the Yellow and Mediterranean Sea. An improved data-recovery method for the filter technique was also developed using spectrum slopes. This method recovered the baselines of spectrum that were often altered in the original methods. High $a^*_{ph}({lambda})$ values in the oligotrophic Mediterranean Sea and low values in the Yellow Sea were observed, ranging 0.01 to 0.12 $m^2$/mg at the chlorophyll maximum absorption wavelength of 440 nm. The empirical relationship between $a^*_{ph}$(440nm) and chlorophyll concentrations () was found to fit a power function ($a^*_{ph}$=0.039 $^{-0.369}$), which was similar to Bricaud et al. (1995). Absorption specific coefficients for suspended sediment ($a^*_{ss}$) did not show any relationship with concentrations of suspended sediment. However, an average value of $a^*_{ss}$ ranging 0.005 - 0.08 $m^2$/g at 440nm, was comparable to the specific absorption coefficient of soil (loess) measured by Ahn (1990). The morepronounced variability of $a^*_{ss}$ than $a^*_{ph}$ was determined from the variable mixing ratio values between particulate organic matter and mineral. It can also be explained by a wide size-distribution range for SS which were determined by their specific gravity, bottom state, depth and agitation of water mass by wind in the sea surface.

Pseudo Image Composition and Sensor Models Analysis of SPOT Satellite Imagery for Inaccessible Area (비접근 지역에 대한 SPOT 위성영상의 Pseudo영상 구성 및 센서모델 분석)

  • 방기인;조우석
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.1
    • /
    • pp.33-44
    • /
    • 2001
  • The paper presents several satellite models and satellite image decomposition methods for inaccessible area where ground control points can hardly acquired in conventional ways. First, 10 different satellite sensor models, which were extended from collinearity condition equations, were developed and then behavior of each sensor model was investigated. Secondly, satellite images were decomposed and also pseudo images were generated. The satellite sensor model extended from collinearity equations was represented by the six exterior orientation parameters in $1^{st}$, $2^{nd}$ and $3^{rd}$ order function of satellite image row. Among them, the rotational angle parameters such as $\omega$(omega) and $\Phi$(phi) correlated highly with positional parameters could be assigned to constant values. For inaccessible area, satellite images were decomposed, which means that two consecutive images were combined as one image, The combined image consists of one satellite image with ground control points and the other without ground control points. In addition, a pseudo image which is an imaginary image, was prepared from one satellite image with ground control points and the other without ground control points. In other words, the pseudo image is an arbitrary image bridging two consecutive images. For the experiments, SPOT satellite images exposed to the similar area in different pass were used. Conclusively, it was found that 10 different satellite sensor models and 5 different decomposed methods delivered different levels of accuracy. Among them, the satellite camera model with 1st order function of image row for positional orientation parameters and rotational angle parameter of kappa, and constant rotational angle parameter omega and phi provided the best 60m maximum error at check point with pseudo images arrangement.

Investigation of Intertidal Zone using TerraSAR-X (TerraSAR-X를 이용한 조간대 관측)

  • Park, Jeong-Won;Lee, Yoon-Kyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.383-389
    • /
    • 2009
  • The main objective of the research is a feasibility study on the intertidal zone using a X-band radar satellite, TerraSAR-X. The TerraSAR-X data have been acquired in the west coast of Korea where large tidal flats, Ganghwa and Yeongjong tidal flats, are developed. Investigations include: 1) waterline and backscattering characteristics of the high resolution X-band images in tidal flats; 2) polarimetric signature of halophytes (or salt marsh plants), specifically Suaeda japonica; and 3) phase and coherence of interferometric pairs. Waterlines from TerraSAR-X data satisfy the requirement of horizontal accuracy of 60 m that corresponds to 20 cm in average height difference while current other spaceborne SAR systems could not meet the requirement. HH-polarization was the best for extraction of waterline, and its geometric position is reliable due to the short wavelength and accurate orbit control of the TerraSAR-X. A halophyte or salt marsh plant, Suaeda japonica, is an indicator of local sea level change. From X-band ground radar measurements, a dual polarization of VV/VH-pol. is anticipated to be the best for detection of the plant with about 9 dB difference at 35 degree incidence angle. However, TerraSAR-X HH/TV dual polarization was turned to be more effective for salt marsh monitoring. The HH-HV value was the maximum of about 7.9 dB at 31.6 degree incidence angle, which is fairly consistent with the results of X-band ground radar measurement. The boundary of salt marsh is effectively traceable specifically by TerraSAR-X cross-polarization data. While interferometric phase is not coherent within normal tidal flat, areas of salt marsh where the landization is preceded show coherent interferometric phases regardless of seasons or tide conditions. Although TerraSAR-X interferometry may not be effective to directly measure height or changes in tidal flat surface, TanDEM-X or other future X-band SAR tandem missions within one-day interval would be useful for mapping tidal flat topography.

Optimization of Antimicrobial Activity Against Food-borne Pathogens in Grapefruit Seed Extract and a Lactic Acid Mixture (식품위해미생물에 대한 자몽종자 추출물과 젖산 혼합물의 항균효과 최적화)

  • Kim, Hae-Seop;Park, Jeong-Wook;Park, In-Bae;Lee, Young-Jae;Kim, Jeong-Mok;Jo, Yeong-Cheol
    • Food Science and Preservation
    • /
    • v.16 no.4
    • /
    • pp.472-481
    • /
    • 2009
  • Response surface methodology (RSM) is frequently used for optimization studies. In the present work, RSM was used to determine the antimicrobial activitiesof grapefruit seed extract (GFSE) and a lactic acid mixture (LA) against Staphylococcus aureus, Bacillus cereus, Escherichia coli, Salmonella typhimurium, Pseudomonas fluorescens, and Vibrio parahaemolyticus. A central composite design was used to investigate the effects of independent variables on dependent parameters. One set of antimicrobial preparations included mixtures of 1% (w/w) GFSE and 10% (w/w) LA, in which the relative proportions of component antimicrobials varied between 0 and 100%. In further experiments, the relative proportions were between 20% and 100%. Antimicrobial effects against various microorganisms were mathematically encoded for analysis. The codes are given in parentheses after the bacterial names, and were S. aureus ($Y_1$), B. cereus ($Y_2$), E. coli ($Y_3$), S. typhimurium ($Y_4$), P. fluorescens ($Y_5$), and V. parahaemolyticus ($Y_6$). The optimum antimicrobial activity of the 1% (w/w) GFSE:10% (w/w) LA mixture against each microorganism was obtained by superimposing contour plots ofantimicrobial activities on measures of response obtained under various conditions. The optimum rangesfor maximum antimicrobial activity of a mixture with a ratio of 1:10 (by weight) GFSE and LA were 35.73:64.27 and 56.58:43.42 (v/v), and the optimum mixture ratio was 51.70-100%. Under the tested conditions (a ratio of 1% [w/w] GFSE to 10% [w/w] LA of 40:60, and a concentration of 1% [w/w] GFSE and 10% [w/w] LA, 70% of the highest value tested), and within optimum antimicrobial activity ranges, the antimicrobial activities of the 1% (w/w) GFSE:10% (w/w) LA mixture against S. aureus ($Y_1$), B. cereus ($Y_2$), E. coli ($Y_3$), S. typhimurium ($Y_4$), P. fluorescens ($Y_5$), and V. parahaemolyticus ($Y_6$) were 24.55, 25.22, 20.20, 22.49, 23.89, and 28.04 mm, respectively. The predicted values at optimum conditions were similar to experimental values.

Analysis of Correlation between Particulate Matter in the Atmosphere and Rainwater Quality During Spring and Summer of 2020 (봄·여름철 대기 중 미세먼지와 빗물 수질 상관성 분석)

  • Park, Hyemin;Kim, Taeyong;Heo, Junyong;Yang, Minjune
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1859-1867
    • /
    • 2021
  • This study investigated seasonal characteristics of the particulate matter (PM) in the atmosphere and rainwater quality in Busan, South Korea, and evaluated the seasonal effect of PM10 concentration in the atmosphere on the rainwater quality using multivariate statistical analysis. The concentration of PM in the atmosphere and meteorological observations(daily precipitation amount and rainfall intensity) are obtained from automatic weather systems (AWS) by the Korea Meteorological Administration (KMA) from March 2020 to August 2020. Rainwater samples (n = 216, 13 rain events) were continuously collected from the beginning of the precipitation using the rainwater collecting device at Pukyong National University. The samples were analyzed for pH, EC (electrical conductivity), water-soluble cations(Na+, Mg2+, K+, Ca2+, and NH4+), and anions(Cl-, NO3-, and SO42-). The concentration of PM10 in the atmosphere was steadily measured before and after the precipitation with a custom-built PM sensor node. The measured data were analyzed using principal component analysis (PCA) and Pearson correlation analysis to identify relationships between the concentration of PM10 in the atmosphere and rainwater quality. In spring, the daily average concentration of PM10 (34.11 ㎍/m3) and PM2.5 (19.23 ㎍/m3) in the atmosphere were relatively high, while the value of daily precipitation amount and rainfall intensity were relatively low. In addition, the concentration of PM10 in the atmosphere showed a significant positive correlation with the concentration of water-soluble ions (r = 0.99) and EC (r = 0.95) and a negative correlation with the pH (r = -0.84) of rainwater samples. In summer, the daily average concentration of PM10 (27.79 ㎍/m3) and PM2.5 (17.41 ㎍/m3) in the atmosphere were relatively low, and the maximum rainfall intensity was 81.6 mm/h, recording a large amount of rain for a long time. The results indicated that there was no statistically significant correlation between the concentration of PM10 in the atmosphere and rainwater quality in summer.

Distribution and Potential Suitable Habitats of an Endemic Plant, Sophora koreensis in Korea (MaxEnt 분석을 통한 한반도 특산식물 개느삼 서식 가능지역 분석)

  • An, Jong-Bin;Sung, Chan Yong;Moon, Ae-Ra;Kim, Sodam;Jung, Ji-Young;Son, Sungwon;Shin, Hyun-Tak;Park, Wan-Geun
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.2
    • /
    • pp.154-163
    • /
    • 2021
  • This study was carried out to present the habitat distribution status and the habitat distribution prediction of Sophora koreensis, which is the Korean Endemic Plant included in the EN (Endangered) class of the IUCN Red List. The habit distribution survey of Sophora koreensis confirmed 19 habitats in Gangwon Province, including 13 habitats in Yanggu-gun, 3 habitats in Inje-gun, 2 habitats in Chuncheon-si, and 1 habitat in Hongcheon-gun. The northernmost habitat of Sophora koreensis in Korea was in Imdang-ri, Yanggu-gun; the easternmost habitat in Hangye-ri, Inje-gun; the westernmost habitat in Jinae-ri, Chuncheon-si; and the southernmost habitat in Sungdong-ri, Hongcheon-gun. The altitude of the Sophora koreensis habitats ranged from 169 to 711 m, with an average altitude of 375m. The area of the habitats was 8,000-734,000 m2, with an average area of 202,789 m2. Most habitats were the managed forests, such as thinning and pruning forests. The MaxEnt program analysis for the potential habitat of Sophora koreensis showed the AUC value of 0.9762. The predictive habitat distribution was Yanggu-gun, Inje-gun, Hwacheon-gun, and Chuncheon-si in Gangwon Province. The variables that influence the prediction of the habitat distribution were the annual precipitation, soil carbon content, and maximum monthly temperature. This study confirmed that habitats of Sophora koreensis were mostly found in the ridge area with rich light intensity. They can be used as basic data for the designation of protected areas of Sophora koreensis habitat.

Digital Documentation and Short-term Monitoring on Original Rampart Wall of the Gyejoksanseong Fortress in Daejeon, Korea (대전 계족산성 원형성벽의 디지털기록화 및 단기모니터링 연구)

  • Kim, Sung Han;Lee, Chan Hee;Jo, Young Hoon
    • Economic and Environmental Geology
    • /
    • v.52 no.2
    • /
    • pp.169-188
    • /
    • 2019
  • This study was carried out unmanned aerial photography and terrestrial laser scanning to establish digital database on original wall of Gyejoksanseong fortress, and measured ground control points for continuity of the monitoring. It also performed precise examination with the naked eye, unmanned aerial photogrammetry, endoscopy, total station and handy measurement to examine the structural stability of the original walls. The ground control points were considered as a point where visual field can be secured, 3 points were selected around each of the south and north walls. For the right side of the south original wall, aerial photogrammetry was conducted using drones and a deviation analysis of 3-dimensional digital models was performed for short-term monitoring. As a result, the two original walls were almost matched in range within 5mm, and no difference indicating displacement of stones was found, except for partial deviation. Regular monitoring of the areas with structural deformation such as bulging, weak and fracture zone by precisely examining with the naked eye and using high-resolution photo data revealed no distinct change. The inner foundation observed through endoscopy found out that filling stones of the original walls were still remained, while most filling soil was lost. As a result of measuring the total station focusing around the points with structural deformation on the original walls, the maximum displacements of the north and south walls were somewhat high with 6.6mm and 3.8mm, respectively, while the final displacements were relatively stable at below 2.9mm and 1.4mm, respectively. Handy measurement also did not reveal clear structural deformation with displacements below 0.82mm at all points. Even though the results of displacement monitoring on the original walls are stable, it is hard to secure structural stability due to the characteristics of ramparts where sudden brittle fracture occurs. Therefore, it is necessary to conduct conservational scientific diagnosis, precise monitoring, and structural analysis based on the 3-dimensional figuration information obtained in this research.

Toxicity Assessment of Antifouling Agent using the Survival and Population Growth Rate of Marine Rotifer, Brachionus plicatilis (해산로티퍼(Brachionus plicatilis)의 생존 및 개체군 성장률을 이용한 신방오도료(Zinc undecylenate)의 독성평가)

  • Hwang, Un-Ki;Choi, Hoon;Park, Yun-Ho;Park, Na-Young;Jang, Soo-Jung;Lee, Seung Min;Choi, Yun-Seok;Yang, Joon-Yong;Lee, Ju-Wook
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.3
    • /
    • pp.392-399
    • /
    • 2018
  • Toxicity assessment of antifouling agent, zinc undecylenate (ZU) has been investigated using the rate of survival and population growth in marine rotifer, Brachionus plicatilis. The survival rate of Brachionus plicatilis was determined after 24 h of exposure to ZU and was not affected up to the maximum level of $100.0mg\;L^{-1}$ of ZU. The population growth rate (r) was determined after 72 h of exposure to ZU. It was observed that r in the controls (absence ZU) was greater than 0.5 but exhibited a sudden decrease with an increase in the concentration of ZU. ZU reduced r in a dose-dependent manner and a significant reduction occurred at a concentration greater than $12.5mg\;L^{-1}$. The 50% effective concentration ($EC_{50}$) value of r during ZU exposure was $26.4mg\;L^{-1}$, No-observed-effect-concentration (NOEC) was $6.3mg\;L^{-1}$ and Lowest-observed-effect-concentration (LOEC) was $12.5mg\;L^{-1}$, respectively. Based on the results, it is apparent that ZU concentration greater than $12.5mg\;L^{-1}$ exhibited a toxic effect on the r of zooplankton, B. plicatilis in natural ecosystems.