• 제목/요약/키워드: maximum specific growth rate (k)

검색결과 194건 처리시간 0.025초

Dunaliella salina 의 광 제한 현탁 연속배양에 의한 ${\beta}$-carotene 의 생산 (Kinetics of producing ${\beta}$-carotene from Dunaliella salina by Light Limited Turbidostat Cultivation)

  • 박영식;유호금;오상집;이현용
    • 한국미생물·생명공학회지
    • /
    • 제21권4호
    • /
    • pp.342-347
    • /
    • 1993
  • It was proved that the cell growth followed a photo-inhibition model in light-limited turbidostat cultivation, having 1.06 (1/h) of maximum specific growth rate and 0.00094(kcal/$cm^2$/h) and 0.063 (kcal/$cm^2$/h) as half saturation and light inhibition constants, repectively. ${\beta}$-carotene production showed a growth related porcess. And the activation energy of Dunaliella salina was roughly estimated as 12.36 (kcal/mole) in employing Arrhenius relationship. It should also point out that relatively much porduction of ${\beta}$-carotene was observed at hight light intensity with yieding 1.04 (mg-carotene/g-dry cell/day) of specific product production rate while the cell growth was decreased. The optimal conditions of producing ${\beta}$-carotene in turbiodostat cultivation were as follows: $7.5{\times}10^{-3}$(kcal/$cm^2$/h)of light intensity, 2 (mM) and 50(mM) of nitrate and sodium bicarbonate concentrations and 100(ml/h) of $CO_2$ flow rate.

  • PDF

Batch and Continuous Culture Kinetics for Production of Carotenoids by ${\beta}$-Ionone-Resistant Mutant of Xanthophyllomyces dendrorhous

  • Park, Ki-Moon;Song, Min-Woo;Kang, Seog-Jin;Lee, Jae-Heung
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권7호
    • /
    • pp.1221-1225
    • /
    • 2007
  • A ${\beta}$-ionone-resistant mutant strain isolated from the red yeast Xanthophyllomyces dendrorhous KCTC 7704 was used for batch and continuous fermentation kinetic studies with glucose media in a 2.5-1 jar fermentor at $22^{\circ}C$ and pH 4.5. The kinetic pattern of growth and carotenoid concentration in the batch fermentations exhibited a so-called mixed-growth-associated product formation, possibly due to the fact that the content of intracellular carotenoids depends on the degree of physical maturation toward adulthood. To determine the maximum specific growth rate constant (${\mu}_m$) and Monod constant ($K_s$) for the mutant, glucose-limited continuous culture studies were performed at different dilution rates within a range of $0.02-0.10\;h^{-1}$. A reciprocal plot of the steady-state data (viz., reciprocal of glucose concentration versus residence time) obtained from continuous culture experiments was used to estimate a ${\mu}_m$ of $0.15\;h^{-1}$ and $k_s$ of 1.19 g/l. The carotenoid content related to the residence time appeared to assume a typical form of saturation kinetics. The maximum carotenoid content ($X_m$) for the mutant was estimated to be $1.04\;{\mu}g/mg$ dry cell weight, and the Lee constant ($k_m$), which was tentatively defined in this work, was found to be 3.0 h.

황 농도에 따른 Acidithiobacillus thiooxidans의 생장 특성 (Growth Characteristics of Acidithiobacillus thiooxidans in Different Sulfur Concentrations)

  • 이은영;조경숙;류희욱
    • 한국미생물·생명공학회지
    • /
    • 제34권4호
    • /
    • pp.338-341
    • /
    • 2006
  • The growth characteristics of sulfur-oxidizing bacteria, Acidithiobacillus thiooxidans AZ11, MET, and TAS were investigated in mineral salt media supplemented with elemental sulfur of 1$\sim$50 g $L^{-1}$. The sulfur oxidation rates of A. thiooxidans. MET and TAS increased highly with increasing sulfur concentration up to 10 g L$^{-1}$, but the rates increased slowly in sulfur concentration over 10 g L$^{-1}$. A. thiooxidans AZ11 showed the parallel increase of sulfur oxidation rate until sulfur concentration increased up to 40 g L$^{-1}$. The maximum sulfur oxidation rates (V$_{max}$) of AZl1, MET and TAS were 1.88, 1.38 and 0.43 g S L$^{-1}$ d$^{-1}$, respectively. The maximum specific growth rates (${\mu}_{max}$) of AZ11, MET, and TAS were 0.33 d$^{-1}$, 0.30 d$^{-1}$ and 0.45 d$^{-1}$, respectively. Although MET and TAS couldn't grow at sulfate concentration of 40 g L$^{-1}$, AZ11 could grow in the presence of 58 g L$^{-1}$ sulfate, the final oxidation product of elemental sulfur.

효모 K. marxianus에 의한 돼지감자 착즙에 대한 에탄올 발효 특성 (Ethanol Fermentation Characteristics of K. marxianus on Jerusalem Artichoke tuber Extract)

  • 김진한;허병기배천순김현성
    • KSBB Journal
    • /
    • 제5권1호
    • /
    • pp.75-80
    • /
    • 1990
  • 돼지감자 착즙의 당농도를 50,80,110,190,250g/l로 하고 K.marxianus의 비증식속도,균체수율,알콜수율등을 발효액주으이 생성알콜농도및 당 소모량의 함수로 구명한 결과 다음의 결론을 얻었다. 생성알콜농도에 대한 비증식속도 및 알콜의 비생성속도의 함수관계는 알콜생성량이 낮을때 선형 함수관계를, 알콜생성량이 높을때는 지수 함수관계를 나타내었다. 균체의 증식은 생성알콜농도가 50g/l이상에서, 그리고 당의 소모량이 100g/l이상에서 잔여 당농도에 무관하게 정지되는 경향을 나타내었다. 비증식속도와 당 소모량사이에는 선형 함수관계를 나타내었으며,알콜 비생성속도와 당소모량사이의 함수관계는 초기당농도가 낮을때 선형 함수관계를 나타내었으나 초기당농도가 높아질수록 지수함수관계로 천이되었다. 균체수율및 알콜수율은 초기당농도에 무관하게 생성알콜농도 25g/l 부근에서 최대치를 나타내었으며, 알콜생성량이 증가함에 따라 초기 당농도가 증가할수록 완만하게 감소하였다. 이상의 함수관계로부터 K.marxianus의 알콜발효에 있어 한계 당농도는 110g/l근방으로, 한계 알콜농도는 50g/l근방인 것으로 추정되었다.

  • PDF

KINETICS OF AUTOTROPHIC DENITRIFICATION FOR THE BIOFILM FORMED ON SULFUR PARTICLES : Evaluation of Molecular Technique on Monitoring Biomass Growth

  • Kim, Sung-Youn;Jang, Am;Kim, I-Tae;Kim, Kwang-Soo;Kim, In-S.
    • Environmental Engineering Research
    • /
    • 제10권6호
    • /
    • pp.283-293
    • /
    • 2005
  • Characteristics of sulfur-based autotrophic denitrification in a semi-continuous type reactor and the kinetic parameters were studied. Enriched autotrophic denitrifying culture was used for the reactor operation. Biomass growth on sulfur particles and in the liquid medium was monitored using the DAPI staining method. From the result of ion concentration changes and the biomass growth, maximum specific growth rate, ${\mu}_{max}$, and the half velocity constant, $K_M$, were estimated as $0.61\;d^{-1}$ and 3.66 mg/L, respectively. Growth yield coefficient, Y values for electron acceptor and donor were found as 0.49 gVSS/g N and 0.16 gVSS/g S. The biomass showed specific denitrification rate, ranging 0.86-1.13 gN/g VSS-d. A half-order equation was found to best simulate the denitrification process in the packed bed reactor operated in the semi-continuous mode.

Effects of Nitrogen and Sodium on Growth in Phaeodactylum tricornutum (Bacillariophyceae)

  • Lee Soon Jeong;Choi Han Gil;Nam Ki Wan
    • Fisheries and Aquatic Sciences
    • /
    • 제3권2호
    • /
    • pp.151-155
    • /
    • 2000
  • Phaeodactylum tricornutum (Bacillariophyceae) is a marine diatom which has been supplied as a food of bivalves. In this study, growth responses of P. tricornutum to some nitrogen sources and sodium were investigated by measuring cell number and contents of chlorophyll a in culture. In medium with nitrogen and sodium, brisk cell division occurred and maximum growth rate was respectively found in the medium with 150 mg/l of nitrate and 10 mg/l of ammonium and urea. At 10-500 mg/l ammonium and urea and 200-500 mg/l nitrate, specific growth rate decreased slightly. However, no cell division observed in sodium-deficient medium, regardless of presence or absence of nitrogen. This suggests that sodium is required for the nitrogen uptake of P. tricornutum, resulting nitrogen uptake leading to cell division. Also the upper limits of ammonium and nitrate for the growth of P. tricornutum seem to be 10 mg/l and 500 mg/l, respectively.

  • PDF

여수해만산 유독 와편모조류 Gymnodinium catenotum (Graham)의 용존태 무기인에 대한 성장 및 흡수 (Growth and Phosphate Uptake of the Toxic Dinoflagellate Gymnodinium catenatum Isolated from Yeosuhae Bay, South Korea)

  • 오석진;윤양호;양한섭
    • 한국수산과학회지
    • /
    • 제40권2호
    • /
    • pp.95-101
    • /
    • 2007
  • We investigated the growth and phosphate uptake of a toxic dinoflagellate, Gymnodinium catenatum, isolated from Yeosuhae Bay, South Korea. A short-term phosphate uptake experiment revealed that its maximum uptake and the half-saturation constant were 1.39 pmol/cell/hr and $2.65{\mu}M$, respectively. In a semicontinuous culture, the maximum specific growth rate and minimum phosphorus cell quota of G. catenatum were 0.39/day and 1.27 pmol/cell, respectively. Thus, G. catenatum is a poor competitor in terms of inorganic nutrient use and is unlikely to form blooms in Yeosuhae Bay.

K. fragilis에 의한 돼지감자의 에탄올 발효에 관한 연구 (Ethanol Fermentation by K. fragilis from Jerusalem Artichoke)

  • 허병기;유진선양지원
    • KSBB Journal
    • /
    • 제4권1호
    • /
    • pp.48-56
    • /
    • 1989
  • K.fragilis를 이용한 돼지감자의 알콜발효에서 초기 당농도 및 초기 pH가 발효특성치에 미치는 영향을 실험을 통하여 규명하였으며 그 결과를 종합하면 다음과 같다. 1) 최대 비성장속도($\mu$$_{max})는 초기 당농도 65g/l에서 0.40$hr^-1로서 가장 높은 값을 나타내었다. 2) 최대 비알콜생성속도(V$_{max})는 초기당농도 105g/1에서 1.68g/ghr로서 가장 높은 값을 나타내었는데, 이것은 빠른 균체의 성장이 곧 빠른 생성물 생성의 조건이 아님을 뜻한다고 여겨지며, 저농도 기질에서 기질 및 생성물의 저해를 적게 받는 것을 알 수 있다. 3)균체(Y$_{x/s})및 메탄올수율(Y$_{p/s})은 저농도 기질인 당농도 26g/1에서 각각 0.14, 0.49로서 최대값을 나타내었다. 4)알콜발효능(F)는 기질농도 26, 45g/1에서 97%로서 가장높았고, 잔당의 농도도 5g/1미만이 였다. 5)총팔에탄올생성율(Q)은 고농도 기질인 당농도 215g/1에서 2.78/ghr로서 가장 높았다. 6)효모 K.fragilis가 분비하는 lnulinase의 생성최적 p$^{H}인 5.5에서 최대 비성장속도 0.40, 최대 비알콜 생성속도 1.60, 균체수율 0.096, 에탄올수율 0.49로서 최대 값을 나타내었다.

  • PDF

Enhancement of Tissue Type Plasminogen Activator (tPA) Production from Recombinant CHO Cells by Low Electromagnetic Fields

  • Lee, Seo-Ho;Lee, Hyun-Soo;Lee, Mi-Kyoung;Lee, Jin-Ha;Kim, Jong-Dai;Park, Young-Shik;Lee, Shin-Young;Lee, Hyeon-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권3호
    • /
    • pp.457-462
    • /
    • 2002
  • Low Electromagnetic Field (EMF) intensity in the range of $1{\mu}T\;to\;10{\mu}T$(Tesla) was found to enhance the growth of CHO cells and the production of tPA in batch and perfusion cultivations. At $1{\mu}T\;intensity,\;1.3{\times}10^7$ viable cells/ml of maximum cell density and 80 mg/l of maximum tPA production were obtained in batch cultivation, compared to $2.8{\times}10^6$ viable cells/ml and 59 mg tPA/1 in unexposed case (control). A similar trend was observed in the perfusion process, where it was possible to obtain $1.2{\times}10^7$ viable cells/ml of maximum cell density and 81 mg tPA/l of maximum tPA production by more than 80 days of cultivation. However, there was not much difference between $1{\mu}T\;and\;10{\mu}T$ in perfusion cultivation, possibly due to better environmental growth conditions being maintained by continuous feeding of fresh medium into the reactor. On the contrary, both cell growth and tPA production were severely inhibited at higher than 1 mT intensity, showing no growth at 10 mT exposure. Specific growth rate was linearly correlated to specific tPA production rate at $1{\mu}T$EMF intensity, which represents a partially growth-related relationship. It was also found that a large amount of $Ca^2+$ was released at low EMF intensity, even though the cell growth was not much affected. Low EMF intensity significantly improved both cell growth and tPA production, and tPA production seemed to be more affected than the cell growth, possibly due to the changes of cell membrane characteristics. It can be concluded that the elaboration of EMF intensity less than $10{\mu}T$ could improve cell growth and tPA production, but mainly tPA secretion through batch or perfusion process in a bioreactor.

고정화 Phanerochaete chrysosporium을 이용한 다환 방향족 화합물의 분해 (Biodegradation of PAHs (Polycyclic Aromatic Hydrocarbon) Using Immobilized Cells of Phanerochaete chrysosporium)

  • 서윤수;류원률;김창준;장용근;조무환
    • KSBB Journal
    • /
    • 제15권3호
    • /
    • pp.247-253
    • /
    • 2000
  • This study was aimed to enhance polycyclic aromatic hydrocarbon(PAHS) biodegradation rate by repeated-batch treatment using immobilized cells of Phanerochaete chrysosporium. In the repeated-batch operations with 30 mg/L of pyrene the maximum degradation rate was 6.58 mg/L day. As the number of batches increased the concentration of immobilized cells significantly decreased and the degradation rate and specific acitivity gradually increased to a maximum value and then decreased. To have PAH degradation activity and cell mass recovered one batch of cultivation using the growth medium instead of the PAH-degrading medium was carried in the course of repeated-batch operations. This maximum degradation rates of pyrene and anthracene were 4.29 and 4.46 mg/L$.$day respectively. Overall the rate of PAH degradation could be enhanced 2.5-30 folds by using immobilized cells compared to the case of using suspended cells.

  • PDF