• 제목/요약/키워드: maximum shear stress

검색결과 550건 처리시간 0.028초

PFC2D를 이용한 암반 절리의 수치전단시험으로부터 전단 특성 분석 (Analysis of Shear Properties from the Numerical Shear Test on Rock Joints with PFC2D)

  • 노정두;강성승
    • 지질공학
    • /
    • 제31권3호
    • /
    • pp.357-366
    • /
    • 2021
  • 암석의 절리면 거칠기 형상에 따른 전단거동은 지반 및 암반 구조물 안정성에 큰 영향을 미칠 수 있다. 암반 구조물에 대한 설계를 효율적으로 하기 위해서는 절리에 의한 전단거동을 이해하고 정확하게 전단강도를 산정하는 것이 필요하다. 이 연구에서는 암석 절리면 거칠기의 전단거동을 알아보기 위해 Barton and Choubey(1977)가 제안한 10가지 형태의 표준 절리 프로파일 중 절리면 거칠기가 매끄러운 1번(JRC-1)과 거칠기 비교적 큰 7번(JRC-7)과 9번(JRC-9)에 대해 PFC2D를 이용한 수치전단시험을 수행하였다. 그 결과 최대 전단응력은 절리면의 거칠기 진폭이 큰 JRC-7과 JRC-9가 매끈한 JRC-1보다 약 3.2~5.0배 크게 나타났다. 최대 전단변위는 첫 번째 수직응력일 때가 두 번째일 때보다 약 4.1~5.8배 크게 나타났다. 절리면 마찰각은 절리면의 거칠기 진폭이 큰 JRC-7과 JRC-9가 매끈한 JRC-1보다 약 1.8~3.9배 크게 나타났다. 결론적으로 절리면의 거칠기가 커질수록 최대 전단응력과 절리면 마찰각은 증가하는 것으로 나타났다.

지대치 형태에 따른 Post core의 치근내부 및 지지조직의 응력분석 (STRESS ANALYSIS OF ROOT AND SUPPORTING TISSUES BY VARIOUS POST CORE DESIGN)

  • 김진;방몽숙
    • 대한치과보철학회지
    • /
    • 제31권4호
    • /
    • pp.468-481
    • /
    • 1993
  • The Purpose of this study was to analyze the stresses and displacements of various post and core. The Finite element models of central incisors were divided into seven types according to the various amount of remaining tooth structures. $10kgf/mm^2$ force was applied respectively as follows : 1) Horizontal on the labial surface 2) $26^{\circ}$ diagonal direction on the lingual surface. Material property, geometry, and load condition of each model were inputted to the two dimensional ANSYS 4.4A finite element program : stresses and displacements were analyzed. Results were follows : 1. In the case of $130^{\circ}$ shoulder post and core, Maximum tensile and shear stresses were observed in the crown margin. 2. Maximum shear stress was about 29% reduced by contrabevel. 3. In the case of 1mm axial tooth structure, Maximum tensile stress observed in the dentin. 4. In the case of but joint of cervix, Maximum stress concentration was observed in the dentin by the inclined and horizontal force. 5. Horizontal force produced the extraordinary high stresses in dentin and supporting structures. 6. The amount of remaining tooth structure affected the level of stress significantly and it determined the location of stress concentration.

  • PDF

Localized deformation in sands and glass beads subjected to plane strain compressions

  • Zhuang, Li;Nakata, Yukio;Lee, In-Mo
    • Geomechanics and Engineering
    • /
    • 제5권6호
    • /
    • pp.499-517
    • /
    • 2013
  • In order to investigate shear behavior of granular materials due to excavation and associated unloading actions, load-controlled plane strain compression tests under decreasing confining pressure were performed under drained conditions and the results were compared with the conventional plane strain compression tests. Four types of granular material consisting of two quartz sands and two glass beads were used to investigate particle shape effects. It is clarified that macro stress-strain behavior is more easily influenced by stress level and stress path in sands than in glass beads. Development of localized deformation was analyzed using photogrammetry method. It was found that shear bands are generated before peak strength and shear band patterns vary during the whole shearing process. Under the same test condition, shear band thickness in the two sands was smaller than that in one type of glass beads even if the materials have almost the same mean particle size. Shear band thickness also decreased with increase of confining pressure regardless of particle shape or size. Local maximum shear strain inside shear band grew approximately linearly with global axial strain from onset of shear band to the end of softening. The growth rate is found related to shear band thickness. The wider shear band, the relatively lower the growth rate. Finally, observed shear band inclination angles were compared with classical Coulomb and Roscoe solutions and different results were found for sands and glass beads.

지반변동성을 고려한 액상화 진동전단응력비의 확률론적 해석 (Probabilistic Analysis of Liquefaction Cyclic Stress Ratio Considering Soil Variability)

  • 허준
    • 한국농공학회논문집
    • /
    • 제60권2호
    • /
    • pp.95-101
    • /
    • 2018
  • The objective of this study is to evaluate the liquefaction cyclic shear stress ratio considering the soil uncertainty. In this study, the probabilistic ground response analysis and the cyclic shear stress ratio analysis for the liquefaction potential evaluation are performed considering the soil variability. The statistical properties of input ground parameters were analyzed to investigate the parameters affecting the seismic response analysis. The Probabilistic analysis was carried out by Monte Carlo Simulation method. The ground response analysis was performed considering the soil variability and the probability distribution characteristics of the ground acceleration. The probability distribution of the peak ground acceleration by seismic characteristics was presented. The differences of liquefaction shear stress ratio results according to soil variability were compared and analyzed. The maximum acceleration of the ground by the deterministic method was analyzed to be overestimation of the ground amplification phenomenon. Also, the shear stress ratio was overestimated.

수직력하에서 임프란트 나사형태에 따른 응력의 3차원 유한요소법적 분석 (THE THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS ACCORDING TO IMPLANT THREAD DESIGN UNDER THE AXIAL LOAD)

  • 김우택;차용두;오세종;박상수;김현우;박양호;박준우;이건주
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제27권2호
    • /
    • pp.111-117
    • /
    • 2001
  • There are three designs of thread form in screw type implants: V-thread, Reverse buttress thread and Square thread. The purpose of this study was to find out how thread form designs have an influence on the equivalent stress, equivalent strain, maximum shear stress and maximum shear strain and which design of thread form generates more maximum equivalent stress and strain. 3-D finite element analysis was used to evaluate the stress and strain patterns of three tread types. The results of this study were as follow. 1. Under the 200N of axial load, the value of maximum equivalent stress is smallest in square thread and there is no significant difference between that of V thread and reverse buttress thread. 2. Under the 200N of axial load, the value of maximum equivalent strain is largest in V thread and smallest in square thread. 3. Under the 200N of axial load, the value of maximum shear stress is smallest in square thread and there is no significant difference between that of V thread and reverse buttress thread. 4. Under the 200N of axial load, the value of maximum equivalent strain is largest in V thread and there is no significant difference between that of square thread and reverse buttress thread. 5. Above results show that the square thread has special advantages in stress and strain compared with other thread types, especially in shear stess which is most determinant to implant-bone interface. Considering the superior biomechanical properties of square form implant, we presume that square form implant has better clinical results than the other types of implants in the same clinical conditions.

  • PDF

철도차량용 휠과 레일의 접촉특성 및 응력 해석 (Contact Characteristic and Stress Analysis of Wheel-Rail for Rolling Stock)

  • 성기득;양원호;조명래;김철
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.148-156
    • /
    • 2000
  • In this paper, we investigate contact characteristic of wheel-rail interface for rolling stock using the finite element method. Contact stress distribution due to the rail mounting slope is obtained in order to reduce the contact stress. Stress analysis of the rail, firstly, is performed one subjected to elliptical pressure based on Hertz theory. Secondly, we perform stress analysis of the rail subjected to contact stress obtained by this study. Results for the maximum shear stress, its location and the principal shear stress distribution are compared.

  • PDF

FATIGUE DESIGN FORSUS30IL SPOT-WELDED MULTI-LAP JOINTS SUBJECTED TO TENSILE SHEAR LOAD

  • Na, T.H.m;Jung, W.S.;Bae, D.H;I.S.Shon
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.121-126
    • /
    • 2002
  • The railroad cars or the commercial vehicles are generally manufactured by the spot welding. Among various kinds of spot welded lap joints, multi-lap joints are one of popular joints in manufacturing their body structures. But, fatigue strength of these joints are lower than that of base metal due to high stress concentration at the nugget edge of the spot weld and are known to considerably be influenced by welding conditions as well as the mechanical and geometrical factors. Thus, it is necessary to establish a reasonable and systematic fatigue design criterion for spot welded multi-lap joints. In this paper, the $\Delta$P-N$_{f}$ curves has been rearranged in the $\Delta$$\sigma$-N$_{f}$ relation with the maximum stress at the nugget edge of spot welded multi-lap joints subjected to tensile shear load. Consequently, the fatigue data were evaluated in terms of fracture mechanics by plotting on the $\Delta$OP-N$_{f}$ curves. From the results obtained, both of them have been revealed to be applicable to fatigue design of spot welded multi-lap joints. However, the fracture mechanical approach is found to be more effective than the maximum stress approach in the range on N$_{f}$$\geq$2x10$^{5}$ . .

  • PDF

AFLC의 배열특성에 관한 연구 (Aligning properties of antiferroelectric liquid crystals (AFLC))

  • 강진우;박원상;최덕운;구경상;황용석;이서헌;이기동;윤태훈;김재창
    • 한국광학회지
    • /
    • 제12권5호
    • /
    • pp.414-417
    • /
    • 2001
  • Experimentally, the aligned direction of AFLCs in electro-optic cells having both the substrates rubbed along the same direction is skewed by a few degrees from the rebbing direction. To explain why, we proposed "Torsional Rigid Body Model" and interpreted their skewing angle as the action of short pitch with the large shear stress. That is, the azimuthal an anchoring strength (about 35 dyn/cm) in the cell is much larger than the maximum shear stress (about 10$^{-6}$ dyn/cm) for the original pitch and so forbids the optic axis to skew. On the side hand, the strength is smaller than the maximum shear stress (about 42 dyn/cm) for short pitch and then allows the optic axis to skew.

  • PDF

탄성유체 윤활상태와 접선하중을 고려한 접촉표면 내부의 응력해석 (Subsurface Stress Analysis with the Consideration of Tangential Loading and Elasto-Hydrodynamic Lubrication)

  • 구영필
    • Tribology and Lubricants
    • /
    • 제20권4호
    • /
    • pp.190-196
    • /
    • 2004
  • The effect of tangential loading on the subsurface stress field has been investigated numerically. As tangential load increases, the subsurface stress field expands more widely to the direction of the tangential load. Places of the maximum shear stress and the maximum effective stress are getting closer to the surface with the increasing tangential load. The tangential load in an elasto-hydrodynamic lubrication condition is so low that it does not affect the subsurface stress field.

Renovation of steel beams using by imperfect functionally graded materials plate

  • Daouadji, Tahar Hassaine;Abderezak, Rabahi;Rabia, Benferhat;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제41권6호
    • /
    • pp.851-860
    • /
    • 2021
  • In this paper, a new approach of interface stress analysis in steel beam strengthened by porous FGM (Functionally Graded Materials) is presented to calculate the shear stress in the hybrid steel beam and loaded by a uniformly distributed load. The results show that there exists a high concentration of shear stress at the ends of the imperfect FGM, which might result in premature failure of the strengthening scheme at these locations. A parametric study has been conducted to investigate the sensitivity of interface behavior to parameters such as the rigidity of FGM plate (degree of homogeneity), the porosity index of FGM and the thickness of adhesive all were found to have a marked effect on the magnitude of maximum shear stress in the FGM member. we can conclude that the new approach is general in nature and may be applicable to all kinds of materials.