Yoon, Ji Hyun;Lee, Seung Won;Lim, Da Jung;Kim, Seon Wook;Kim, In Seon
Korean Journal of Environmental Agriculture
/
v.40
no.4
/
pp.335-344
/
2021
BACKGROUND: Cyantraniliprole is a systemic diamide insecticide that has been used to control lepidopteran pests in agriculture. Cyantraniliprole has become an issue due to its potentiality of unexpectable contamination in rotational crop cultivation. Thus, studies on the evaluation of cyantraniliprole translocated from soil into rotational crops are required. METHODS AND RESULTS: Cyantraniliprole was treated at a yearly maximum application level onto bare soil under greenhouse conditions in two geographically different regions. Lettuce was transplanted and spinach and radish were sown onto the soil 30 and 60 days-plant back intervals (PBIs) after cyantraniliprole treatment. The QuEChERS method was modified and coupled with LC/MS/MS analysis to determine the residues of cyantraniliprole in soil and plant samples. The methods for sample preparation and instrumental conditions were validated to meet the criteria of Codex guidelines and were successful to determine cyantraniliprole quantitatively and qualitatively in the samples. Cyantraniliprole residues in lettuce samples were 0.01 mg/kg for PBI 60 and 0.02 mg/kg for PBI 30, respectively. The residues in spinach samples were 0.01 mg/kg for PBI 60 and 0.01~0.02 mg/kg for PBI 30, respectively. Less than limit of the quantitation (LOQ) level (0.01 mg/kg) of cyantraniliprole was observed in radish samples. The residues in the plant samples were found as the levels less than maximum residue limit (MRL) for leafy and root vegetables. CONCLUSION(S): This study suggests PBI 30~60 days for rotational cultivation of lettuce, spinach and radish in greenhouse soil treated with cyantraniliprole at a yearly maximum application level.
Fomesafen is a selective herbicide, and used to control annual and perennial broad-leaf grass on soybean and fruit fields in USA and China, but not introduced in Korea yet. So, MRL (Maximum Residue Level), and analytical method of fomesafen were not establishment in Korea. Therefore, this experiment was conducted to establish a determination method for fomesafen residue in crops using HPLC-UVD/MS. Fomesafen residue was extracted with acetone from representative samples of five raw products which comprised hulled rice, soybean, apple, green pepper, and Chinese cabbage. The extract was diluted with saline water, and dichloromethane partition was followed to recover fomesafen from the aqueous phase. Florisil column chromatography was additionally employed for final clean up of the extract. The fomesafen was quantitated by HPLC with UVD, using a Shiseido CAPCELL-PAK UG C18 column. The crops were fortified with fomesafen at 3 levels per crop. Mean recovery ratio were ranged from 87.5% for a 0.4 ppm in hulled rice to 102.5% for a 0.4 ppm in apple. The coefficients of variation were ranged from 0.6% for a 2.0 ppm in hulled rice to 7.7% for a 0.04 ppm in green pepper. Quantitative limit of fomesafen was 0.04 mg/kg in representative 5 crop samples. A LC/MS with selected-ion monitoring was also provided to confirm the suspected residue. Therefore, this analytical method was reproducible and sensitive enough to determine the residue of fomesafen in agricultural commodities.
This study was conducted to monitor residual pesticides in ginseng and balloon flower roots and to assess their risk to human health. All of 112 samples consisted of ginseng and balloon roots were purchased from traditional domestic markets and supermarkets in nine provinces of Korea in 2012. Multi-residue analysis of 122 pesticides was conducted and the analysis was performed by gas chromatography-electron capture detector, gas chromatography- nitrogen/phosphorus detector, and high-performance liquid chromatography. Seven pesticides were detected in 12 root samples and the detection rate was 10.7%. The detected twelve root samples were 10 ginseng root samples and 2 balloon root samples. Pesticides detected in root samples were procymidone, kresoxim-methyl, endosulfan, cypermethrin, tralomethrin, tetraconazole and chlorfluazuron. Among them, two pesticides as tetraconazole in a balloon flower root and cypermethrin in a ginseng root exceeded the recommended maximum residue limit set by Korea Food and Drug Administration. Five pesticides detected from 10 root samples were identified as unregistered pesticides in Korea. In order to do risk assessment with Korean medicinal plant consumption, estimated daily intake of residual pesticides were determined and compared to acceptable daily intake, referring to %ADI values. The range of %ADI values was from 0.006% to 0.333%. Taken together, it demonstrates the pesticides found in the two root samples were below the safety margin, indicating no effect on human health.
Park, Eun-Jeong;Lee, Ju-Hee;Kim, Tae-Hwa;Kim, Jang-Eok
Korean Journal of Environmental Agriculture
/
v.28
no.3
/
pp.281-288
/
2009
The strobilurin fungicides, azoxystrobin and kresoxim-methyl, were investigated to know the biological half-lives and dissipation patterns in Korean melon under plastic film house condition. Used pesticides for field application were 20% azoxystrobin of suspension concentrate and 47% kresoxim-methyl of water dispersible granule. Two pesticides were sprayed at recommended and double dose rate. Pesticide residues in Korean melon were analyzed until 14 days after application. The azoxystrobin was analyzed by HPLC equipped with UV detector after cleanup with florisil glass column. Initial residue concentrations of azoxystrobin in Korean melon at recommended and double dose rate were 0.09 mg/kg and 0.14 mg/kg, respectively. Those were less than 0.2 mg/kg maximum residue limit of Korean melon established by KFDA. The biological half-lives of azoxystrobin in Korean melon were 4.7 days at recommended dose rate and 7.8 days at double dose rate. Initial concentrations of kresoxim-methyl which was analyzed by GLC-ECD in Korean melon at recommended and double dose rate were 0.10 mg/kg and 0.23 mg/kg, respectively. Those were less than 1.0 mg/kg, MRL. The biological half-lives of kresoxim-methyl in Korean melon were 4.1 days at recommended dose rate and 4.8 days at double dose rate. The residue amounts of both pesticide was lower than MRL and biological half-lives were not so long. Because the weight of Korean melon under plastic film house condition was fast increased during cultivation.
Park, Hyunjin;Kim, Joohye;Kang, Hui-Seung;Cho, Byung-Hoon;Oh, Jae-Ho
Journal of Food Hygiene and Safety
/
v.35
no.2
/
pp.109-117
/
2020
This study aimed to develop an analytical method for determination of 18 dyes in livestock and fishery products by liquid chromatograph-tandem mass spectrometry (LC-MS/MS). The developed method was validated for linearity, accuracy, limit of quantifications (LOQ) and recovery based on the CODEX guideline (CAC/GL-71). Target matrices (beef, pork, chicken, egg, milk, flatfish, eel, and shrimp) were extracted using acetonitrile (containing 1% of acetic acid) and then, purified with C18 and primary secondary amine (PSA). Calibration linearity was obtained (r2>0.98) and LOQs were 0.002 mg/kg in animal products. The recoveries of dyes were ranged from 63 to 112% and relative standard deviations (RSDs, %) were less than 15%. The residues of 18 dyes were investigated in real samples (n=124) collected from retail markets in South Korea. As a result, a total of seven samples showed positive results for target analytes in fish samples. However, there was no violation according to the maximum residue limits set by the Korean Food Code. The proposed method will be used for routine analysis of dye residues in livestock and fishery products.
BACKGROUND: It is important to understand residual patterns of pesticides applied on crops for ensuring their safety in agricultural products. However, there are few studies on the residual patterns of pesticides in minor crops, which are small in cultivation area. In this study, residual amounts of bifenthrin and chlorfenapyr sprayed on perilla leaf as a minor crop were investigated to know their residual patterns. METHODS AND RESULTS: Bifenthrin and chlorfenapyr were sprayed 2 or 3 times on perilla leaves at a week interval prior to harvest, and the perilla leaves were collected at 0, 1, 3, 5 and 7 days after the final application of pesticides. Recoveries for residual analysis of pesticides spiked on perilla leaves with concentrations of 0.1 and 0.5 mg/kg were 81.9-104.8%. The residual amounts of pesticides interpreted using first order kinetics model show that dissipation constants of bifenthrin and chlorfenapyr in perilla leaves were 0.0724-0.0535 and $0.0948-0.0821day^{-1}$, respectively. In addition, the dissipation half-lives in perilla leaves were 9.6-12.9 days for bifenthrin and 7.3-8.4 days for chlorfenapyr. When pre-harvest residue limits (PHRL) of bifenthrin and chlorfenapyr at 10 days before harvest calculated on the basis of the dissipation constants and maximum residue limits of the pesticides were calculated as 17.1 for bifenthrin and 15.9 mg/kg for chlorfenapyr. CONCLUSION: Therefore, the PHRL calculated using the time-dependant residual patterns of pesticides in perilla leaves and their regression analysis may be used as experimental evidences in order to ensure the safety of pesticides in perilla leaves before harvest.
Four heavy metals (Pb, Cd, As, and Hg) in 38 species (total 325 samples) of oriental animality medicines were monitored by inductively coupled plasma-mass spectrometry (ICP-MS) and automatic mercury analyzer (AMA). The detected concentration range of Pb, Cd, As was presented as $0.02{\mu}gkg^{-1}$$(D.L){\sim}11.29mgkg^{-1}$, $0.01{\mu}gkg^{-1}$$(D.L){\sim}2.50 mgkg^{-1}$, $0.12{\mu}gkg^{-1}$$(D.L){\sim}5.27mgkg^{-1}$, respectively. In case of Hg, it the concentration range was $0.01{\sim}77.11mgkg^{-1}$ except one sample which exceeded detection limit. In all samples of Amydae Carapax and Gallnut, it was not detected over the maximum residue limits of metals. Pb is in charge of the greatest portion of contamination in 22 species of animality medicines, and in case of Hg, 54.46% of total samples were over the maximum residue limits. Therefore, environmental levels of Pb and Hg are needed to continue the researches and the studies for tracking pollution source are required.
A simultaneous official method was developed for the determination of phorate and its metabolites (phorate sulfoxide, phorate sulfone, phorate oxon, phorate oxon sulfoxide, phorate oxon sulfone) in livestock samples. The analytes were quantified and confirmed via liquid chromatograph-tandem mass spectrometer (LC-MS/MS) in positive ion mode using multiple reaction monitoring (MRM). Phorate and its metabolites were extracted from beef and milk samples with acidified acetonitrile (containing 1% acetic acid) and partitioned with anhydrous magnesium sulfate. Then, the extract was purified through primary secondary amine (PSA) and C18 dispersive sorbent. Matrix matched calibration curves were linear over the calibration ranges (0.005-0.5 mg/L) for all the analytes into blank extract with $r^2$ > 0.996. For validation purposes, recovery studies were carried out at three different concentration levels (beef 0.004, 0.04 and 0.2 mg/kg; milk 0.008, 0.04 and 0.2 mg/kg, n = 5). The recoveries were within 79.2-113.9% with relative standard deviations (RSDs) less than 19.2% for all analytes. All values were consistent with the criteria ranges requested in the Codex guidelines. The limit of quantification was quite lower than the maximum residue limit (MRL) set by the Ministry of Food and Drug Safety (0.05 mg/kg). The proposed analytical method was accurate, effective and sensitive for phorate and its metabolites determination and it will be used to as an official analytical method in Korea.
For this study, we conducted a simultaneous multiresidue analysis of veterinary drugs in cultured fishery products in Chungnam Province in 2018. A total of 115 fishery product samples were obtained from fish farms and fishery production sites located in the province. In all, 29 residual veterinary drugs in the samples were analyzed using a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. As a result, veterinary drug residues were only detected in a small number of the 106 samples (92.2%), and the detection rate was 7.8% (9 of 115 samples). The amounts were also below maximum residual limit (MRL) for fishery products, although one sample exceeded the MRL allowed by the Ministry of Food and Drug Safety and was detected in loach. The nine residual veterinary drugs were detected in 8 samples: loach, eel, catfish, freshwater bream, flatfish, rockfish and shrimp. The detected veterinary drugs were oxolinic acid, enrofloxacin, ciprofloxacin, sulfadiazine, flumequine and oxytetracycline. The most frequently detected antibiotic was oxolinic acid, and enrofloxacin exceeded the MRL in loach sample. Residues of most veterinary drugs were either not detected or were below the MRL, and while the status of fishery products is seen as safe overall, current surveillance efforts over veterinary drugs should be continued.
The studies for the derivatization of 3-monochloropropane-1,2-diol (3-MCPD) were performed mainly as acylation with HFBI (heptafluorobutyrylimidazole), alkylation with PBA (phenylboric acid) and silylation with BSTFA (N,O-bis[trimethylsilyl]trifluoroacetamide). Also silylation with MTBSTFA(N-methyl-N-[tert.-butyldimethylsilyl] trifluoroacetamide) and acylation with MBTFA (N-Methyl-bis[trifluoro-acetamide]) were also considered. Except the TBDMS derivative of 3-MCPD, all the derivatives were detected well. The derivatives of 3-MCPD with HFBI, PBA and BSTFA showed below 10 ${\mu}g/kg$ which was sensitive enough to satisfy Korea maximum residue limit 0.3 mg/kg. Among the tested adsorbents, Extrelut20 and Florisil were evaluated as the proper adsorbents to eliminate the soy sauce matrix for 3-MCPD. Ethyl acetate was the most efficient eluent with good recovery rate. The desired surrogate compound and internal standard were 1,2-butanediol and 1,2-dibromo-3-chloropropane, respectively. The limit of detection for PB-MCPD and TMS-MCPD were 10.16 and 7.06 ${\mu}g/kg$ on GC/MSD, respectively. HFB-MCPD derivative showed the lowest detection limits 2.98 and 5.32 ${\mu}g/kg$ by GC/ECD and GC/MSD, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.